mikrocontroller.net

Forum: Offtopic Kleines Wahrscheinlichkeitsproblem


Autor: satt (Gast)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
Hi,

hab gestern den Film 21 gesehen und eine dort vorkommendes 
Wahrscheinlichkeitsproblem habe ich nicht ganz verstanden.
Es hieß Quizmasterproblem, es sei ein Kandidat, dem drei Türen zur 
Auswahl gestellt werden. Hinter einer ist das Traumauto, hinter den 
anderen nichts.
Der Kandidat wählt irgendeine Tür, klar, 33 1/3 % Wahrscheinlichkeit, 
das Auto zu bekommen.Nun öffnet der Quizmaster eine der verbliebenen 
Türen, hinter der nichts ist, und fragt nun, ob der Kandidat jetzt zur 
anderen Tür wechseln will.
Und jetzt kommt mein Problem:
Ich hatte gedacht, ist schnurz, ob er das macht, es bleiben 2 Türen, 
also 50/50, so oder so. Aber im Film wurde gesagt, dass es richtig sei, 
zur anderen Tür zu wechseln, weil sich dadurch die 
Gewinnwahrscheinlichkeit auf 66 2/3 % erhöhen würde.
Das habe ich nicht verstanden, kann das jemand aufklären?

Autor: Kevin K. (nemon) Benutzerseite
Datum:

Bewertung
0 lesenswert
nicht lesenswert
zu anfang ist die chance, dass in der z.b. linken tür der gewinn ist, 
genau 1/3. so weit, so klar, zu 1/3 ist der gewinn in der mitte, zu 1/3 
rechts, anders ausgedrückt, die wahrscheinlichkeit, dass der gewinn 
NICHT links ist, ist 2/3. aufgrunde der bisherigen vorgeschichte ändert 
sich daran nichts, wenn das rechte, leere tor geöffnet wird. die chance, 
dass der gewinn NICHT links ist, ist noch immer 2/3. da aber nur noch 
das mittlere tor übrig ist, ist die chance, dort den gewinn zu treffen 
bei 2/3.

Autor: satt (Gast)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
Das will mir nicht in den Kopf.
Auf der einen Seite soll sich das 1/3 - 2/3 Verhältnis nicht ändern, 
aber auf der anderen Seite beziehst du die Tatsache mit ein, dass da 
eben nur noch zwei Türen sind.

Autor: Tobias (Gast)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
Wie sieht das denn dann bei 4 Toren aus?

Wäre das dann folgendermaßen:

erst jedens Tor 1/4 Wahrscheinlichekit, ich nehme z.b. tor 1
dann wird tor 4 geöffnet und da ist nix.
--> tor 1 = 1/4, tor 2 = 3/8, tor 3 = 3/8
dann nehme ich z.b. tor 2, anschließend wir tor 3 geöffnet und da ist 
nix
--> tor 1 = 5/8, tor 2 = 3/8
und deshalb entscheide ich mich dann logischerweise für tor 1

Autor: Norbert (Gast)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
Das Buch zum Problem (na ja, auf 2- 3 Seiten) ist "The Curious Incident 
of the Dog in the Night-Time".

Autor: Martin Kohler (mkohler)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
satt wrote:
> Das will mir nicht in den Kopf.
Kehre mal die Überlegung dahingehend um, dass du dir überlegst, wo der 
Gewinn NICHT ist.

Die Problemstellung nennt sich übrigens Ziegenproblem, 
Drei-Türen-Problem, Monty-Hall-Problem oder Monty-Hall-Dilemma.
Siehe auch http://de.wikipedia.org/wiki/Ziegenproblem

Autor: Karl Heinz (kbuchegg) (Moderator)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
Auf den ersten Blick scheint das auch paradox zu sein und ich wollts am 
Anfang auch nicht glauben. Aber es stimmt tatsächlich. Man kann das mit 
einem Computerprogramm simulieren und es kommt tatsächlich die 
angegebenen Werte raus.

Autor: Martin Kohler (mkohler)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
Zitat aus der Wikipedia:
-------------------------
Wahl=1 und Auto=1
Wahl=1 und Auto=2 *
Wahl=1 und Auto=3 *
Wahl=2 und Auto=1 *
Wahl=2 und Auto=2
Wahl=2 und Auto=3 *
Wahl=3 und Auto=1 *
Wahl=3 und Auto=2 *
Wahl=3 und Auto=3
-------------------------

--> beim * gewinnt man, wenn man wechselt.
--> in 6 von 9 Fällen
--> Chance zum Gewinn 2/3 beim Wechsel

Autor: Karl Heinz (kbuchegg) (Moderator)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
Ich habs mir dann so klargemacht. Mit einem ein klein wenig veränderten 
Handlungsablauf:

du wählst eine der 3 Türen.
Jetzt kommt der Moderator und bietet dir den Deal an:
Entweder du bleibst bei deiner Tür oder du wechselst zu den anderen 
beiden Türen gleichzeitig. Wenn du also wechselst und hinter einer der 
beiden anderen Türen ist das Auto, dann gehört es dir.

Jetzt ist unmittelbar einsichtig, dass du besser beraten bist, wenn du 
wechselst. Bleibst du bei deiner Tür, hast du eine Chance von 1/3. 
Wechselst du, hast du eine Chance von 2/3

Wenn du aber wechselst, dann ist eines klar: Eine der beiden Türen 
muss eine Niete sein. Was der Moderator macht ist jetzt nichts anderes 
als offenzulegen, welche der beiden Türen auf jeden Fall eine Niete ist. 
Die 1/3 Wahrscheinlichkeit dieser Tür wechseln zur anderen Tür hinüber, 
denn in Summe haben beide Türen zusammen immer noch 2/3 
Wahrscheinlichkeit. Vor dem Öffnen waren diese 2/3 gleichmässig auf die 
beiden Türen verteilt. Nach dem Öffnen ist die Wahrscheinlichkeit für 
die geöffnete Tür auf 0 gesunken und dafür für die nicht geöffnete auf 
die vollen 2/3 gestiegen. Denn im Grunde lautet die Fragestellung für 
dich immer noch: Nehme ich meine Tür oder setzte ich auf die anderen 
beiden gleichzeitig.


Was anderes wäre es natürlich, wenn nach dem Öffnen der Türen im 
Hintergrund das Auto neu angeordnet werden würde. Dann wäre deine Chance 
tatsächlich 50/50.

Autor: Gast (Gast)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
Manchmal kann man sich sowas leicht klarmachen, indem man das ganze 
extremer denkt.

Es gibt 100 Tueren.

Eine wird gewaehlt, 1% Wahrscheinlichkeit, das Auto zu treffen. Man hat 
es
also vermutlich nicht erwischt.

Der Quizmaster oeffnet 98 Tueren ohne Gewinn. Er weiss, welche Tueren 
leer sind und somit geoffnet werden koennen.

Wo wird jetzt wohl der Gewinn sein? In der vermutlich sowieso 
Nietentuer, die Du gewaehlt hast, oder in der verbliebenen? Ich denke so 
versteht mans auch ohne rechnen.

Autor: satt (Gast)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
Zitat aus der Wikipedia:
-------------------------
Wahl=1 und Auto=1
Wahl=1 und Auto=2 *
Wahl=1 und Auto=3 *
Wahl=2 und Auto=1 *
Wahl=2 und Auto=2
Wahl=2 und Auto=3 *
Wahl=3 und Auto=1 *
Wahl=3 und Auto=2 *
Wahl=3 und Auto=3
-------------------------

--> beim * gewinnt man, wenn man wechselt.
--> in 6 von 9 Fällen
--> Chance zum Gewinn 2/3 beim Wechsel

Das leuchtet mir prinzipiell ganz gut ein, auch einige der anderen 
Erklärungen.
Aaaber, da stehen halt immer noch alle drei Türen drin.
Es wird doch aber dann eine weggenommen, also so:


Wahl=1 und Auto=1
Wahl=1 und Auto=2 *
Wahl=1 und Auto=3 (*) zählt nicht, da z.b. Tür 3 geöffnet wurde
Wahl=2 und Auto=1 *
Wahl=2 und Auto=2
Wahl=2 und Auto=3 (*) zählt nicht, da z.b. Tür 3 geöffnet wurde
Wahl=3 und Auto=1 *
Wahl=3 und Auto=2 (*) zählt nicht, da z.b. Tür 2 geöffnet wurde
Wahl=3 und Auto=3

es verbleiben also

Wahl=1 und Auto=1
Wahl=1 und Auto=2 *
Wahl=2 und Auto=1 *
Wahl=2 und Auto=2
Wahl=3 und Auto=1 *
Wahl=3 und Auto=3

Drei mit und drei ohne Stern - 50/50. :)

Autor: Läubi .. (laeubi) Benutzerseite
Datum:

Bewertung
0 lesenswert
nicht lesenswert
Karl Heinz und der letzte Gast habes ganz gut dargestellt.

Der "Trick" ist einfach, das der Quizmaster nicht eine Tür öffnen kann 
wo das Auto ist (sosnt wärs ja Quatsch). Man erhält also gewissermaßen 
die Wahl, eine Tür oder zwei Türen zu wählen.

Die Wahrscheinlichkeit zu Gewinnen steigt auch nur im Mittel...

Autor: Master Snowman (snowman)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
also das hier von Wikipedia ist viel einleuchtender: einmal 
durchspielen, wenn er wechselt und einmal durchspielen, wenn er nicht 
wechselt -> et voilà :-)
http://de.wikipedia.org/wiki/Ziegenproblem#Schema_...

Autor: satt (Gast)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
Aber nein, eben nicht zwei Türen, weil man doch weiß, dass eine geöffnet 
werden wird UND dass dort das Auto nicht drin ist. Und man verbleibt in 
jedem Fall mit zwei Türen, die, die man gewählt hat, und die andere. Und 
hinter einer ist das Auto. 50%.....

Autor: Gast8 (Gast)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
An dem Problem sind schon Matheprofessoren verzweifelt. Vor ein paar 
Jahren war dazu mal was im Spiegel, die Leserbriefe dazu teils 
unglaublich. Manche haben es erst geglaubt, nach dem sie sich ein 
Programm geschrieben haben und sich die Ergebnisse der Simulation 
angesehen haben.

Autor: Zardoz (Gast)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
Hallo satt,

dann stell Dir mal vor, Du hast einen Lottoschein ausgefüllt. Und nun 
kommt jemand aus der Zukunft mit einem anderen Lottoschein und stellt 
Dich vor die Wahl, Deinen oder seinen Schein abzugeben. Welchen würdest 
Du wählen?

Nice week,
Zardoz

Autor: Master Snowman (snowman)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
kommt darauf an, ob er ein sadist ist oder nicht ;-)

Autor: Bastler (Gast)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
Kommt ein Masochist zum Sadist: "Bitte, bitte tu mir weh!"
Sadist:"...Nein!"

Autor: Norbert (Gast)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
>>> dann stell Dir mal vor, Du hast einen Lottoschein ausgefüllt. Und nun
>>> kommt jemand aus der Zukunft mit einem anderen Lottoschein und stellt
>>> Dich vor die Wahl, Deinen oder seinen Schein abzugeben. Welchen würdest
>>> Du wählen?

Diese Logik, diese Schlußfolgerungen, einfach brilliant. Toller Beitrag. 
Du bist der GRÖßTE.

Autor: Karl Heinz (kbuchegg) (Moderator)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
satt wrote:
> Aber nein, eben nicht zwei Türen,

doch.

> weil man doch weiß, dass eine geöffnet
> werden wird UND dass dort das Auto nicht drin ist.

Der springende Punkt ist:
Für diese Tür gelten Regeln. Das kann nicht irgendeine Tür sein, sondern
* es darf nicht die sein, die du selbst gewählt hast
* es darf keine Tür sein, hinter der das Auto ist.

Das Öffnen der Tür bringt dir keinerlei zusätzliche Information, denn du 
weißt, das mindestens eine der beiden nicht gewählten Türen eine Niete 
sein muss. Die Gesamtheit der beiden nicht von dir gewählten Türen hat 
eine Erfoglswahrscheinlichkeit von 2/3 und diese Wahrscheinlichkeit 
ändert sich durch das Öffnen einer der beiden Türen nicht, weil du ja 
vorher schon wusstest, dass mindestens eine der beiden eine Niete sein 
muss.

Im Grunde ist es völlig unerheblich ob die Tür geöfffnet wird oder 
nicht. Die für dich entscheidende Frage ist nach wie vor
* Nehme ich eine einzelne Tür
* oder nehme ich 2 Türen, wobei es egal ist hinter welcher der beiden 
das Auto ist.

Autor: yalu (Gast)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
Auch eine Überlegung:

P(x) (x∈{A,B,C}) sei die Wahscheinlichkeit, dass sich das Auto
hinter der Tür x befindet.

Angenommen, man wählt beim ersten Mal die Tür A, und der Showmaster
öffnet anschließend die Tür B.

Man könnte jetzt meinen, dass P(A)=P(C)=1/2 ist.

Würde der Showmaster der Showmaster nicht Tür B, sondern Tür C öffnen,
wäre nach der gleichen Überlegung P(A)=P(B)=1/2.

Unabhängig davon, welche Tür vom Showmaster geöffnet wird, wäre somit
immer P(A)=1/2. Um P(A) zu bestimmen, müsste man also gar nicht darauf
warten, dass der Showmaster eine der anderen Türen öffnet, vielmehr wäre
schon von Anfang an P(A)=1/2.

Würde man beim ersten Mal nicht A, sondern B oder C wählen, wäre mit der
gleichen Begründung von Anfang an P(B)=1/2 bzw. P(C)=1/2. Man hätte
also, obwohl es drei Türen gibt, mit oder ohne Showmaster immer eine
Erfolgswahrscheinlichkeit von 50%.

Dieser Widerspruch löst sich nur auf, wenn sowohl vor als auch nach dem
Öffnen einer Tür durch den Showmaster die Wahrscheinlichkeit für die
erstgewählte Tür gleich 1/3 ist.

> An dem Problem sind schon Matheprofessoren verzweifelt.

Das habe ich auch schon gehört, kann es aber fast nicht glauben (ok,
vielleicht waren es Numeriker oder Topologen). Gerade in der Stochastik
gibt es sehr viele Paradoxien, von denen die vorliegende ganz klar eine
der einfacheren ist.

Autor: dunky (Gast)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
Hab auch etwas gebraucht um es zu schnallen, aber mit dem Bildchen hier 
fand ich es doch sehr einleuchtend

http://de.wikipedia.org/wiki/Ziegenproblem#Schema_...

Bitte melde dich an um einen Beitrag zu schreiben. Anmeldung ist kostenlos und dauert nur eine Minute.
Bestehender Account
Schon ein Account bei Google/GoogleMail, Yahoo oder Facebook? Keine Anmeldung erforderlich!
Mit Google-Account einloggen | Mit Yahoo-Account einloggen | Mit Facebook-Account einloggen
Noch kein Account? Hier anmelden.