mikrocontroller.net

Forum: Offtopic Luftdruck - Wo sind die Maschinenbauer ?


Autor: UBoot-Stocki (Gast)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
Hi,

ich habe einen aufblasbaren Wasserball - 1m³ Luft passt da rein.

Nehmen wir mal an, dass da 1 bar Überdruck drin ist. Dann müsste doch 
das Volumen des Balls in 10m Wassertiefe 1bar Druck pro 1cm²) genau 1m³ 
sein ?

Nehmen wir nun mal an, dass da 0,5 bar Überdruck drin sind. Wie ist denn 
dann das Volumen des Balls in 10m Wassertiefe (1bar Druck pro 1cm²) ?

Gruß

Andreas

Autor: Warren Spector (jcdenton)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
ich hab mein maschinenbaustudium noch nicht angefangen, aber theoretisch 
wird der ball soweit zusammengedrückt, bis der luftdruck wieder dem 
wasserdruck entspricht.

sprich wieder 1 bar herrscht.

das luftvolumen im ball bei 1 bar beträgt 2m³, bei 0,5 bar müssten es 
1,5m³ sein.

die werden dann auf die hälfte komprimiert, also 0,75m³ was somit das 
ballvolumen ergibt.

Autor: Uhu Uhuhu (uhu)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
Angenommen, der Ball hätte eine unelastische Haut, das Volumen ändert 
sich also beim Aufpumpen nicht.

Wenn der Ball mit 1 Bar in 10 m Wassertiefe gebracht wird, dann ändert 
sich das Volumen nicht, weil innen und außen derselbe Druck von 2 Bar 
absolut herrscht.

Allerdings wirken auf den Ball Auftriebskräfte von 997,2 kp.

Wenn der Ball mit 0,5 Bar in 5 m Wassertiefe gebracht wird, dann ändert 
sich auch nichts. Erst auf den nächsten 5 m wirkt ein Überdruck von 0,5 
Bar Überdruck auf den Ball und drückt ihn zusammen.

Autor: gast (Gast)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
> Angenommen, der Ball hätte eine unelastische Haut

Dann kann sich das Volumen natürlich nicht ändern, unabhängig der 
Druckverhältnisse.

Und was ist kp für eine Einheit?

Autor: UBoot-Stocki (Gast)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
Hi,

"Erst auf den nächsten 5 m wirkt ein Überdruck von 0,5
Bar Überdruck auf den Ball und drückt ihn zusammen."

Ja - aber um wieviel?

Wie kann ich das Volumen berechnen ?

Gruß

Andreas

Autor: Pilot (Gast)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
> 1bar Druck pro 1cm²

Was soll das für eine Einheit sein? Druck pro Fläche? So ein Schmarn.

Ansonsten, bei Druck-Spielchen auf der Erde daran denken: Der Nullpunkt 
ist verschoben. Wir haben schon ständig (ca.) 1 Bar Luftdruck. Bei einem 
Bar Überdruck beträgt der absolute Druck schon 2 Bar. Gleiches im 
Wasser. In 10 meter Tiefe haben wir auch schon einen absoluten Druck von 
2 Bar.

Und die Gasgesetze halten sich übrigens an den Absolut-Druck...

Lustig auch, dass die Eule schon wieder meint, mitreden zu können...

Autor: mr.chip (Gast)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
Druck ist ja bekanntlich Kraft pro Fläche. Das Beispiel mit dem 
Wasserball ist daher etwas heikel, da sich die Hülle ähnlich verhält wie 
eine Feder und ebenfalls eine Kraft pro Fläche aufbaut. Die 
Volumenänderung hängt also primär von den Eigenschaften des Balles ab, 
nicht vom Aussendruck.

Autor: UBoot-Stocki (Gast)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
Hi,

"Die
Volumenänderung hängt also primär von den Eigenschaften des Balles ab,
nicht vom Aussendruck."

Nicht dass das jetzt in die falsche Richtung läuft: Ich habe das Bespiel 
des Wasserballs deshalb gewählt, weil der flexibel ist und damit 
(hoffentlich) vernachlässigt werden kann.

"> 1bar Druck pro 1cm²"

Ich meinte 1kg pro cm²

Nochmals zur Klärung:

ich fülle in einen Ball 0,5 bar Überdruck bezogen auf die 
Wasseroberfläche. Dabei dehnt sich der Ball minimal (abh. vom Werkstoff) 
aus. Die Luft im Ball ist danach genau 1m³.

In 10m Wassettiefe herrscht ein Druck vom 1kg pro cm² auf die Oberfläche 
des Balls.

Wie stark wird dieser komprimiert ?

Das ist die Frage. Besonders interessiert mich, wie ich das ausrechnen 
kann ...

Gruß

Andreas

Autor: mr.chip (Gast)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
> Nicht dass das jetzt in die falsche Richtung läuft: Ich habe das Bespiel
> des Wasserballs deshalb gewählt, weil der flexibel ist und damit
> (hoffentlich) vernachlässigt werden kann.

Bei einem halbwegs realen Ball kann das nicht vernachlässigt werden, 
daher besteht die Gefahr, dass einem die Intuition einen Streich spielt. 
Aber man kann ja z.B. von einem Volumen mit einer unendlich flexiblen 
Hülle sprechen ;-)

Autor: Karl Heinz (kbuchegg) (Moderator)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
UBoot-Stocki wrote:

> Das ist die Frage. Besonders interessiert mich, wie ich das ausrechnen
> kann ...

Ich denke der 2.te Poster, Warren Spector, hat das schon ganz richtig 
ausgerechnet.

Dein Ball hat leer(evakuiert) ein Volumen von 1m^3

Wenn du jetzt den Hahn öffnest, strömt erst mal 1000l Luft ein (=1m^3), 
damit das Innere des Balls auf gleichen Druck wie die Umgebung kommt. 
Damit hast du schon mal 1000l Luft drinnen. Jetzt setzt du noch eins 
drauf und pumpts nochmal 1000l Luft rein (noch 1m^3) um einen Überdruck 
von 1bar zu erreichen. Damit sind 2000l Luft in einem Ball mit dem 
Volumen 1m^3 eingesperrt.

Auf die Wasseroberfläche drückt ständig ein Luftdruck von 1 bar, der 
sich unter Wasser fortsetzt und auch auf alle Gegenstände unter Wasser 
einwirkt. Dazu kommt dann noch der zusätzliche Druck durch die 
Wassersäule. In 10 m Tiefe ist die Summe aus beiden so hoch (=2bar), 
dass sie genau den Druck im Ball ausgleicht.

2. Anordnung: Zu deinem 1000l Luft im Ball pumpst du nur noch 500l 
zusätzlich dazu. Bei 5m Wassertiefe ist daher Gleichstand. Damit bei 10m 
Tiefe wieder Gleichgewicht herrscht, müssen diese 1500l Luft auf welches 
Volumen kompremiert werden, damit sich wieder 2bar Druck im Inneren 
ergeben.   1500/x = 2  ->  x = 1500 / 2 = 750 oder 0.75m^3

Autor: Pilot (Gast)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
> In 10m Wassettiefe herrscht ein Druck vom 1kg pro cm²

Das ist schon wieder falsch, und zwar gleich zweimal...

a.) Druck wird nicht in kg gemessen.
    Kilogramm ist die Einheit der Masse.
    Pascal, Bar etc. sind Einheiten des Druckes.

b.) Und Druck herscht nicht pro Fläche.
    Druck ist die Kraft pro Fläche.
    Die Einheit der Kraft ist Newton.

Autor: Klaus (Gast)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
boa, Pilot du bist so Strohdumm...


Wie setzt sich denn deiner Meinung nach die Einheit für Druck definiert?

Autor: Pilot (Gast)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
@ Karl heinz Buchegger:

Dein Beispiel ist Murks. Entweder ist die Ballhülle starr, oder sie ist 
flexibel aber undehnbar oder sie ist flexibel und dehnbar.

Autor: Pilot (Gast)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
> Wie setzt sich denn deiner Meinung nach die Einheit für Druck definiert?

  Druck = Kraft / Fläche

In Einheiten:

  Pascal = N / m^2

  1000 Pascal = 1 Bar

  1 Bar = 10 Newton / cm^2


Noch fragen, Dummerchen?

Autor: Pilot (Gast)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
Sollte natürlich heissen:

  100.000 Pascal = 1000 Hekto-Pascal = 1 Bar

Autor: Bewunderer (Gast)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
Betrachtet man das eingeschlossene Gas als ideales Gas, so gilt bei 
gleicher Temperatur ohne Berücksichtigung der Elastizität der Hülle:

P1 * V1 = P2 * V2

Autor: Matthias Lipinsky (lippy)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
Ich bin für mmHg...

Autor: Thilo M. (Gast)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
Bedenke:
bei elastischer Hülle wird die Fläche der Hülle bei steigendem Druck 
(Kompression = kleineres Volumen) kleiner.
Nur so als Denkanstoss. ;)

Autor: Uhu Uhuhu (uhu)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
Ich finde, die Hülle trägt nur zur Verwirrung bei. Deswegen: Annahme 
einer unelastischen Hülle, die aber in sich zusammenfallen kann, wenn 
der Außendruck höher, als der Innendruck ist.

Unter dieser Annahme passiert bei dem Ball mit 0,5 Bar bis zu einer 
Tiefe von 5 m garnichts - die Hülle bringt den Differenzdruck zwischen 
Außendruck und Innendruck auf.

Ab 5 m wird er zusammengedrückt und das Volumen ergibt sich aus

   P1 * V1 = P2 * V2

mit P1 = 1,5 Bar, V1 = 1 m³ und P2 = Druck auf der Tiefe > 5 m

Autor: UBoot-Stocki (Gast)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
HI,

mit

P1 * V1 = P2 * V2

mit P1 = 1,5 Bar, V1 = 1 m³ und P2 = Druck auf der Tiefe > 5 m

ergibt sich also (P2=2bar) : V2=0,75m³

Beim P1-Kugelvolumen von V1 = (4/3)*r1³*pi ergibt sich r1=62,04cm

in 10 Meter Tiefe hat der Ball dann r2=56,36cm

Alles klar - vielen Dank

Gruß

Andreas

Autor: Warren Spector (jcdenton)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
Uhu Uhuhu wrote:
> Ich finde, die Hülle trägt nur zur Verwirrung bei. Deswegen: Annahme
> einer unelastischen Hülle, die aber in sich zusammenfallen kann, wenn
> der Außendruck höher, als der Innendruck ist.

nun davon bin ich ausgegangen, weil alles andere nicht wirklich 
berechenbar gewesen wäre, jedenfalls nicht mit diesen wenigen 
informationen.

Autor: Trafowickler ( ursprünglicher ) (Gast)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
Die Elastizität des Ball-Gummis geht natürlich ein.

Lässt man die unberücksichtigt und tut so, als wenn die 
Gummi-Dehn-Konstante unendlich gross wäre, hat man im Fall

1.)
vorher 1 m³ mit 1 Bar Überdruck, also 2 Bar Absolutdruck =>
nachher in 10 m Wassertiefe ändert sich das Volumen nicht

2.) vorher 1 m³ mit 0,5 Bar Überdruck, also 1,5 Bar absolut =>
nachher in 10 m Wassertiefe wird die Luft im Verhältnis 1,5 Bar / 2 Bar 
komprimiert, also hat der Ball dann noch 0,75 m³.  (?)

Bitte melde dich an um einen Beitrag zu schreiben. Anmeldung ist kostenlos und dauert nur eine Minute.
Bestehender Account
Schon ein Account bei Google/GoogleMail, Yahoo oder Facebook? Keine Anmeldung erforderlich!
Mit Google-Account einloggen | Mit Yahoo-Account einloggen | Mit Facebook-Account einloggen
Noch kein Account? Hier anmelden.