mikrocontroller.net

Forum: Analoge Elektronik und Schaltungstechnik magnetischen flussdichte eines Leiters


Autor: Michael Mueller (Gast)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
Guten Nachmittag,

möchte die Flussdichte eines stromdurchflossenen Leiters ausrechnen.
Dazu muss ich ja die mittlere Feldlinienlänge haben.
Leider habe ich keine Ahnung wie gross die ist. Wie kann ich dies 
herausfinden?

Es handelt sich nicht um eine Spule, sondern um einen einzigen, 
stromduchrflossenen Leiter, um welchen sich ein magnetfeld Bildet.

Grüsse M. Mueller

Autor: Mario K. (Gast)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
Sie ist meineserachtens abhänig von der Fläche des Leiters abhänig.

Autor: Dennis (Gast)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
Die Feldlinienlänge ist abhängig von der Stelle an der du die 
magnetische Flussdichte bestimmen willst.
Tip: Feldlinien um einen runden Leiter sind rund.
Wenn du einen andersförmigen Leiter hast, kannst du entweder schätzen 
oder durch Integralrechnung lösen...

Autor: Mario K. (Gast)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
Lm =2Pixr so würd ich das ausrechnen dazu müßtest du den Durchmesser 
ausmessen (mit ein Messschieber z.B) und die Anzahl der Windung eine.

Autor: Mandrake (Gast)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
Das könntest du mit dem magn. Durchflutungsgesetz ausrechnen:

Oder nochmal in Worten:

Das Umlaufintegral entlang einer geschlossenen Kontur (s) über die magn 
Feldstärke (H) ist gleich der vorzeichenbehafteten Summe der durch die 
Kontur umfassten Stromstärken (I).

Wenn man nun den Strom (I) durch das Integral der Stromdichte (S) über 
die vom Strom senkrecht durchflossene Fläche (A) ersetzt bekommt

Gehen wir nun mal vom einfachsten Fall aus, dass deine Stromdichte im 
Leiter konstant ist.

Also

Die Fläche durch die der Strom fließt:


So die rechte Seite hätten wir schon soweit.
Jetzt zur Linken:

Wählen wir unsere geschlossene Kontur so, dass wir genau entlang einer 
Feldlinie gehen und diese ein Kreis ist.

So gilt:

Weiter gehen wir davon aus, dass H nicht von ds abhängig ist.
Dann lautet jetzt die Gleichung


Vereinfachen wir und rechnen wir aus...

Die Gleichung gilt aber nur im Bereich [0 <= r <= R] wobei R der Radius 
des Leiters ist. Für r > R gilt dann eine andere Gleichung weil um den 
Leiter die Stromdichte Null ist. Für µ muss nur noch die richtige 
Materialkonstante eingesetzt werden.


Gruß

Mandrake

Anmerkung:
H, ds, S, dA sind normalerweise Vektoren, die in den og Gleichungen per 
Skalarprodukt verkettet sind. Ich gehe hier davon aus, das H || ds und S 
|| dA sind. Somit geht das Skalarprodukt in das normale Produkt über. 
Sonst muss tatsächlich das Integral im Vektorfeld gelöst werden.

Antwort schreiben

Die Angabe einer E-Mail-Adresse ist freiwillig. Wenn Sie automatisch per E-Mail über Antworten auf Ihren Beitrag informiert werden möchten, melden Sie sich bitte an.

Wichtige Regeln - erst lesen, dann posten!

  • Groß- und Kleinschreibung verwenden
  • Längeren Sourcecode nicht im Text einfügen, sondern als Dateianhang

Formatierung (mehr Informationen...)

  • [c]C-Code[/c]
  • [avrasm]AVR-Assembler-Code[/avrasm]
  • [code]Code in anderen Sprachen, ASCII-Zeichnungen[/code]
  • [math]Formel in LaTeX-Syntax[/math]
  • [[Titel]] - Link zu Artikel
  • Verweis auf anderen Beitrag einfügen: Rechtsklick auf Beitragstitel,
    "Adresse kopieren", und in den Text einfügen




Bild automatisch verkleinern, falls nötig
Bitte das JPG-Format nur für Fotos und Scans verwenden!
Zeichnungen und Screenshots im PNG- oder
GIF-Format hochladen. Siehe Bildformate.
Hinweis: der ursprüngliche Beitrag ist mehr als 6 Monate alt.
Bitte hier nur auf die ursprüngliche Frage antworten,
für neue Fragen einen neuen Beitrag erstellen.

Mit dem Abschicken bestätigst du, die Nutzungsbedingungen anzuerkennen.