| 1 | // Einbinden von bestehenden Modulen
 | 
| 2 | #include <avr/io.h>                            // AVR Standart IO Register Definitionen
 | 
| 3 | #include <stdio.h>                            // Standart IO Register
 | 
| 4 | #include <avr/iom644.h>                          // ATMega644 Register Definitionen
 | 
| 5 | #include <avr/iomxx4.h>                              // ATMegaXX4 Register Definitionen
 | 
| 6 | #include <avr/interrupt.h>                        // Interrupt Register Definitionen
 | 
| 7 | #include "arrays.h"
 | 
| 8 | 
 | 
| 9 | //------------------------------------------------------------------------------
 | 
| 10 | // Definitionen
 | 
| 11 | #define LED_green_on   (PORTD |= (1<<5))
 | 
| 12 | #define LED_green_off (PORTD &= (~(1<<5)))
 | 
| 13 | #define LED_red_on  (PORTB |= (1<<3))
 | 
| 14 | #define LED_red_off  (PORTB &= (~(1<<3)))
 | 
| 15 | #define LED_blue_on  (PORTD |= (1<<7))
 | 
| 16 | #define LED_blue_off  (PORTD &= (~(1<<7)))     
 | 
| 17 | #define X_select    (PORTB &= (~(1<<0)))
 | 
| 18 | #define Y_select    (PORTB &= (~(1<<1)))
 | 
| 19 | #define no_select    ((PORTB |= (1<<0)) & (PORTB |= (1<<1)))
 | 
| 20 | 
 | 
| 21 | #define search 0
 | 
| 22 | #define waitSOH 1
 | 
| 23 | #define waitCONTROL 2
 | 
| 24 | #define waitAXIS 3
 | 
| 25 | #define waitEOT 4
 | 
| 26 | #define Buf_max 49
 | 
| 27 | #define RXTX_Reg UDR0
 | 
| 28 | #define ENQ 0x05
 | 
| 29 | #define SOH 0x01                            // Start of Header
 | 
| 30 | #define EOT 0x04                            // End of Transmission
 | 
| 31 | 
 | 
| 32 | #define F_CPU 24000000                          // Quarzfrequenz
 | 
| 33 | #define BAUDRATE 3000000                        // Baudrate für Kommunikation
 | 
| 34 | 
 | 
| 35 | int uart_putchar(char c, FILE *stream);                  //privat für printf  
 | 
| 36 | static FILE mystdout = FDEV_SETUP_STREAM(uart_putchar, NULL,_FDEV_SETUP_WRITE);
 | 
| 37 | 
 | 
| 38 | //------------------------------------------------------------------------------
 | 
| 39 | // Variablen
 | 
| 40 | static volatile int SysCount = 0;                    // Nutz-Counter
 | 
| 41 | static volatile int index_rxBuf_R = 0;                  // Index wo zuletzt gelesen wurde
 | 
| 42 | static volatile int index_rxBuf_W = 0;                  // Index wo zuletzt geschrieben wurde
 | 
| 43 | static volatile int rxBuf[Buf_max+1];                  // RX Buffer
 | 
| 44 | 
 | 
| 45 | //int control[600]={};
 | 
| 46 | //uint16_t x_achse[600]={};
 | 
| 47 | //uint16_t y_achse[600]={};
 | 
| 48 | 
 | 
| 49 | //------------------------------------------------------------------------------
 | 
| 50 | // Funktionen
 | 
| 51 | void DAC_Output(uint16_t val){                      // converts 12Bit to the DA Converter
 | 
| 52 |   if(val & (1<<8)){
 | 
| 53 |     PORTC |= (1<<3);
 | 
| 54 |   }
 | 
| 55 |   else{
 | 
| 56 |     PORTC &= (~(1<<3));
 | 
| 57 |   }
 | 
| 58 |   if(val & (1<<9)){
 | 
| 59 |     PORTC |= (1<<2);
 | 
| 60 |   }
 | 
| 61 |   else{
 | 
| 62 |     PORTC &= (~(1<<2));
 | 
| 63 |   }
 | 
| 64 |   if(val & (1<<10)){
 | 
| 65 |     PORTC |= (1<<1);
 | 
| 66 |   }
 | 
| 67 |   else{
 | 
| 68 |     PORTC &= (~(1<<1));
 | 
| 69 |   }
 | 
| 70 |   if(val & (1<<11)){
 | 
| 71 |     PORTC |= (1<<0);
 | 
| 72 |   }
 | 
| 73 |   else{
 | 
| 74 |     PORTC &= (~(1<<0));
 | 
| 75 |   }
 | 
| 76 |   PORTA = val;
 | 
| 77 | }
 | 
| 78 | void SysInit(){
 | 
| 79 |   int i = 0; 
 | 
| 80 |   
 | 
| 81 |   DDRA = 0xFF;                            // IO Definieren
 | 
| 82 |   DDRB = 0x1B;
 | 
| 83 |   DDRC = 0x0F;
 | 
| 84 |   PORTC = 0xF0;                            // Pull up einschalten
 | 
| 85 |   DDRD = 0xF0;
 | 
| 86 |   
 | 
| 87 |   UBRR0H = ((F_CPU/(BAUDRATE*8L)-1) >> 8);                  // calc Baud
 | 
| 88 |     UBRR0L = (uint8_t)(F_CPU/(BAUDRATE*8L)-1);               // Double speed
 | 
| 89 |   UCSR0A |= (1<<U2X0);                        // RS232 Settings: double speed
 | 
| 90 |   UCSR0B |= (1<<RXCIE0)|(1<<RXEN0)|(1<<TXEN0);            // Complete Interrupts, RX und TX einschalten
 | 
| 91 |   UCSR0C |= (1<<UCSZ01)|(1<<UCSZ00);                  // Asynchron, 8-Bit  
 | 
| 92 |   
 | 
| 93 |   TCCR2A |= (1<<WGM21);                        // Timer2 löst mit 100kHz Interrupt aus
 | 
| 94 |   TCCR2B |= (1<<CS21);
 | 
| 95 |   TIMSK2 |= (1<<OCIE2A);
 | 
| 96 |   OCR2A = 30;
 | 
| 97 | 
 | 
| 98 |   for(i=0;i<=Buf_max;i++){
 | 
| 99 |     rxBuf[i] = 0;
 | 
| 100 |   }
 | 
| 101 |   DAC_Output(2048);
 | 
| 102 |   X_select;
 | 
| 103 |   Y_select;
 | 
| 104 |   no_select;
 | 
| 105 |   
 | 
| 106 |   stdout = &mystdout;  
 | 
| 107 |   
 | 
| 108 |   sei();                                // Global Interrupts einschalten
 | 
| 109 | }
 | 
| 110 | 
 | 
| 111 | int uart_putchar(char c, FILE *stream)      //Nur für Ausgabe mit printf
 | 
| 112 |     {
 | 
| 113 |       if (c == '\n')
 | 
| 114 |         uart_putchar('\r', stream);
 | 
| 115 |       loop_until_bit_is_set(UCSR0A, UDRE0);
 | 
| 116 |       UDR0 = c;
 | 
| 117 |       return 0;
 | 
| 118 |     }
 | 
| 119 |   
 | 
| 120 |   
 | 
| 121 | void RS232(void){
 | 
| 122 |   static int RS232_state = 0;                      // Protokollstatus
 | 
| 123 |   static int index_par = 0;                      // Array-Variable für Parameters
 | 
| 124 |   static uint16_t k = 0;
 | 
| 125 |   if(index_rxBuf_W == index_rxBuf_R){                  // Buffer Error abgleichen
 | 
| 126 |     return;                              // Wenn Error => aus Funktion heraus springen
 | 
| 127 |   }
 | 
| 128 |   if(index_rxBuf_R == Buf_max){                    // Erhöhen
 | 
| 129 |     index_rxBuf_R = 0;
 | 
| 130 |   }
 | 
| 131 |   else{
 | 
| 132 |     index_rxBuf_R ++;
 | 
| 133 |   }
 | 
| 134 |   switch (RS232_state){                        // RS232 Protokoll
 | 
| 135 |     case search:
 | 
| 136 |       if(rxBuf[index_rxBuf_R] == '@'){
 | 
| 137 |         RS232_state = waitSOH;
 | 
| 138 |         printf("dac_board_v1");
 | 
| 139 |       }
 | 
| 140 |       break;
 | 
| 141 |     case waitSOH:
 | 
| 142 |       switch (rxBuf[index_rxBuf_R]){
 | 
| 143 |         case SOH:  
 | 
| 144 |           RS232_state = waitCONTROL;              // In nächsten State wechselnd
 | 
| 145 |           break;
 | 
| 146 |         case EOT:
 | 
| 147 |           RS232_state = waitSOH;
 | 
| 148 |           break;
 | 
| 149 |         default:
 | 
| 150 |           RXTX_Reg = NACK;
 | 
| 151 |           break;
 | 
| 152 |       }
 | 
| 153 |       break;
 | 
| 154 |     case waitCONTROL:
 | 
| 155 |       control[k] = rxBuf[index_rxBuf_R];
 | 
| 156 |       RS232_state = waitAXIS;
 | 
| 157 |       break;
 | 
| 158 |     case waitAXIS:
 | 
| 159 |       switch (index_par){
 | 
| 160 |         case 0:
 | 
| 161 |           x_achse[k] = (rxBuf[index_rxBuf_R] << 4);
 | 
| 162 |           index_par ++;
 | 
| 163 |           break;
 | 
| 164 |         case 1:
 | 
| 165 |           x_achse[k] |= (x_achse[k - 1] | (rxBuf[index_rxBuf_R] >> 4));
 | 
| 166 |           k ++;
 | 
| 167 |           y_achse[k] = ((rxBuf[index_rxBuf_R] & 0x0F) << 8);
 | 
| 168 |           index_par ++;
 | 
| 169 |           break;
 | 
| 170 |         case 2:
 | 
| 171 |           y_achse[k] |= (y_achse[k - 1] | (rxBuf[index_rxBuf_R]));
 | 
| 172 |           index_par = 0;
 | 
| 173 |           RS232_state = waitEOT;
 | 
| 174 |           break;
 | 
| 175 |       }
 | 
| 176 |       break;
 | 
| 177 |     case waitEOT:
 | 
| 178 |       if(rxBuf[index_rxBuf_R] == EOT){
 | 
| 179 |         RS232_state = waitSOH;
 | 
| 180 |       }
 | 
| 181 |       break;
 | 
| 182 |   }
 | 
| 183 |   if(k == 599) k = 0;
 | 
| 184 |   else k ++;
 | 
| 185 | }
 | 
| 186 | void Output(){
 | 
| 187 |   static uint16_t p = 0;
 | 
| 188 |   if((control[p] & (1<<7)) != 0){
 | 
| 189 |     LED_red_on;
 | 
| 190 |   }
 | 
| 191 |   else{
 | 
| 192 |     LED_red_off;
 | 
| 193 |   }
 | 
| 194 |   if((control[p] & (1<<6)) != 0){
 | 
| 195 |     LED_green_on;
 | 
| 196 |   }
 | 
| 197 |   else{
 | 
| 198 |     LASER_green_off;
 | 
| 199 |   }
 | 
| 200 |   if((control[p] & (1<<5)) != 0){
 | 
| 201 |     LED_blue_on;
 | 
| 202 |   }
 | 
| 203 |   else{
 | 
| 204 |     LED_blue_off;
 | 
| 205 |   }
 | 
| 206 |   if((control[p] & 0x1F) == SysCount){
 | 
| 207 |     DAC_Output(x_achse[p]);
 | 
| 208 |     X_select;
 | 
| 209 |     no_select;
 | 
| 210 |     DAC_Output(y_achse[p]);
 | 
| 211 |     Y_select;
 | 
| 212 |     no_select;
 | 
| 213 |     if((p == 299) || (p == 599)) RXTX_Reg = ENQ;
 | 
| 214 |     if(p == 574) p = 0;
 | 
| 215 |     else p ++;
 | 
| 216 |     SysCount = 0;
 | 
| 217 |   }  
 | 
| 218 | }
 | 
| 219 | //------------------------------------------------------------------------------
 | 
| 220 | // INTERRUPS
 | 
| 221 | ISR(TIMER2_COMPA_vect){                          // Mit 100kHz SysCount erhöhen
 | 
| 222 |   SysCount ++;
 | 
| 223 | }
 | 
| 224 | ISR(USART0_RX_vect){                          // Received Complete Interrupt
 | 
| 225 |   if(index_rxBuf_W == Buf_max){                    // Damit Buffer nicht überläuft
 | 
| 226 |     index_rxBuf_W = 0;
 | 
| 227 |   }
 | 
| 228 |   else{
 | 
| 229 |     index_rxBuf_W ++;
 | 
| 230 |   }
 | 
| 231 |   if(index_rxBuf_W == index_rxBuf_R){                  // Wenn Write-Index Read-Index eingeholt hat
 | 
| 232 |     return;
 | 
| 233 |   }
 | 
| 234 |   else{                                // Daten speichern
 | 
| 235 |     rxBuf[index_rxBuf_W] = RXTX_Reg;
 | 
| 236 |   }
 | 
| 237 | }
 | 
| 238 | //------------------------------------------------------------------------------
 | 
| 239 | // Hauptfunktion (wird beim Start ausgeführt) 
 | 
| 240 | int main(void){
 | 
| 241 |     SysInit();                              // Systeminitialisierung
 | 
| 242 |   while(1){
 | 
| 243 |     RS232();
 | 
| 244 |     Output();
 | 
| 245 |   }
 | 
| 246 | return 0;
 | 
| 247 | }
 | 
| 248 | //------------------------------------------------------------------------------
 |