mikrocontroller.net

Forum: Digitale Signalverarbeitung / DSP mathematische Grundlagen für DSP


Autor: Alex Weiss (Gast)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
Hi,
ich bin Student der Tontechnik und möchte mich privat zum Thema DSP
weiternbilden. Da gibts ja auch ein paar sehr gute Bücher dazu, ich
habe allerdings gemerkt, dass meine mathematischen Kenntnisse nicht
ausreichen. Die meisten Bücher setzen zwar "nur" Analysis 1 voraus,
was wir ja auch im Gymnasium hatten, aber irgendwie ist das doch noch
ein bisschen komplizierter :)
Ich habe mir mal den 2. Band von Papula angeschaut, der scheint ja
alles wichtige drinnen zu haben (v.a. Fourier und Laplace). Was für
andere math. Grundlagen gibt es, die absolut notwenig sind zum
Verständnis von DSP? Und was haltet ihr vom Papula? Ich habe bis jetzt
oft gehört, dass er zu wenig anspruchsvoll sein, was mir aber gerade
gelegen kommen würde, schliesslich bin ich kein Mathematikstudent.

Autor: Thomas (Gast)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
Auf jeden Fall ist es Sinnvoll den ganzen Kram erstmal im
komtinuierlichem Bereich zu verstehen. Die Integral- und
Differentialrechnung mal vorausgesetzt würde ich so vorgehen:
* Komplexe Rechnung
* Fourierreihe
* Komplexe Fourierheihe
* Fouriertransformation
* Laplacetransformation
* Z-Transformation
Dabei immer viel mit entsprechenden Simulationsprogrammen (Matlab)
herumexperimentieren.

Autor: Alex Weiss (Gast)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
Danke für die schnelle Antwort!
Wenn ich mich recht erinnere, wird das alles im Papula behandelt.
Scheint sich also wirklich zu lohnen für mich.
Du schreibst, dass Integral- & Differentialrechnung vorausgesetzt wird.
Auch Gleichungen? Denn das haben wir nicht mehr behandelt.

Autor: Unbekannter (Gast)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
Du musst nicht unbedingt wissen, wie man Differentialgleichungen löst
(zumindest keine nichtlinearen), aber den Zusammenhang
Differentialgleichung zu Systembeschreibung im Laplace-Bereich solltest
du schon verstehen.

Den Papula würde ich für die Grundlagen durchaus empfehlen. Für
Integraltransformationen gibt's allerdings Besseres. z.B.
Föllinger, "Laplace-, Fourier- und Z-Transformation"

Schaden dürfte es sicher auch nicht, wenn du dir ein Buch zu
Systemtheorie besorgst. z.B.
Bernd Girod, "Einführung in die Systemtheorie"

Zum Thema DSP gibt es ein sehr schönes Buch kostenlos im Internet:
http://www.dspguide.com/
Darin werden auch die mathematischen Grundlagen behandelt. Allerdings,
wie ich finde, sind die da nur zu verstehen, wenn man das schon mal
gehört hat.

Autor: Unbekannter2 (Gast)
Datum:

Bewertung
0 lesenswert
nicht lesenswert

Autor: Thomas (Gast)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
Hallo Alex,

Unbekannter hat eigentlich schon alles gesagt, DGLs sind nicht
erforderlich zur Herleitung der Laplace- und Z-Transformation, aber für
das Verständniss des großen Ganzen schon wichtig. So ist z.B. eine
Laplace Übertragungsfunktion im Prinzip eine DGL mit der Einschränkung,
dass sich das System zum Zeitpunkt t=0 in einem eingeschwungenen Zustand
befinden muß. Nett ist auch, wenn man weiß, dass man die Verstärkung für
den statischen Endzustand erhält indem man einfach 's' gleich Null
setzt. Das geht, weil 's' 'd/dt' entspricht und von daher nur eine
Rolle spielt, wenn sich der Signalverlauf noch ändert (nur dann ist die
Ableitung ungleich Null). Wenn das Ergebnis Unendlich ist, dann hast du
ein instabiles System.
Du siehst, da ist kein Hokuspokus hinter, das lässt sich alles relativ
unwissenschaftlich und Anschaulich erklähren, die Frage ist nur, ob
dein Professor das auch so tun wird... ;)

Autor: Alex (Gast)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
All: danke für die vielen Antworten, hat mir alles sehr geholfen!
Thomas: wie gesagt, bis jetzt mache ich Tontechnik, wo dieses Thema
nicht wirklich behandelt wird. Ich mach das eher für mich selber,
interessiert mich einfach. Ausserdem überlege ich mir, ein
Elektrotechnik-Studium anzuschliessen...

Autor: Unbekannter (Gast)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
> So ist z.B. eine Laplace Übertragungsfunktion im Prinzip eine DGL mit
> der Einschränkung, dass sich das System zum Zeitpunkt t=0 in einem
> eingeschwungenen Zustand befinden muß.

So kann man das meiner Meinung nach nicht sagen. Die
Übertragungsfunktion repräsentiert das System mit bestimmten
Anfangsbedingungen. Damit kann man nun jede Systemreaktion auf eine
Anregung bestimmen z.B. Sprungantwort.
Gibt man eine harmonische auf das System und interessiert sich nur für
die Amplitude und Phase am Ausgang, dann verhält es sich so wie du
sagtest. Das System muss im eingeschwungenen Zustand sein d.h. in der
Theorie, das System "läuft" schon seit uendlich langer Zeit.

Autor: Thomas (Gast)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
> So kann man das meiner Meinung nach nicht sagen.
> Die Übertragungsfunktion repräsentiert das System
> mit bestimmten Anfangsbedingungen. Damit kann man
> nun jede Systemreaktion auf eine Anregung bestimmen
> z.B. Sprungantwort.

Genau das habe ich doch geschrieben: Anfangsbedingungen gleich
eingeschwungener Zustand und alle Speicher leer. Bei einer DGL müssen
diese Bedingungen nicht erfüllt sein, die sind aber auch schwehrer zu
lösen.

> Gibt man eine harmonische auf das System und
> interessiert sich nur für die Amplitude und Phase am
> Ausgang, dann verhält es sich so wie du sagtest. Das
> System muss im eingeschwungenen Zustand sein d.h. in der
> Theorie, das System "läuft" schon seit uendlich langer Zeit.

Dazu habe ich wiederum noch gar nichts geschrieben, aber das währe der
Übergang 's' -> 'jw'. Was ich oben beschrieben habe war die
Analogie 'S' -> 'd/dt'

Autor: Unbekannter (Gast)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
> Genau das habe ich doch geschrieben: Anfangsbedingungen gleich
> eingeschwungener Zustand und alle Speicher leer. Bei einer DGL
> müssen diese Bedingungen nicht erfüllt sein, die sind aber auch
> schwehrer zu lösen.

Wahrscheinlich meinen wir das Gleiche.

Ich störe mich nur etwas an dem Begriff "eingeschwungener Zustand".
Für mich ist das der Zustand, der sich einstellt, wenn an einem System
seit unendlich langer Zeit eine Harmonische anliegt und es eben nicht
mehr zu Einschwingvorgängen kommt. Wie du sagst der Übergang s->jw.

Was meinst du damit "Anfangsbedingungen gleich [..] alle Speicher
leer"?
Die Anfangsbedingungen bestimmen doch den "Inhalt" der Speicher.

Nur dass kein Missverständnis aufkommt: Wir reden von LTI-Systemen?

Autor: Thomas (Gast)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
> Ich störe mich nur etwas an dem Begriff "eingeschwungener Zustand".

Als "eingeschwungenen Zustand" haben wir immer den Zustand
bezeichnet, in dem das dynamische übertragungsverhalten des Systems
abgeschlossen ist, ganz egal ob durch einen Sprung oder einen Sinus
angeregt.

> Was meinst du damit "Anfangsbedingungen gleich [..] alle Speicher
> leer"?

Damit meine ich, das wir uns bei der Berechnung mit neuen Anregungen
immer auf Null beziehen müssen. Also wenn wir z.B. nacheinander einen
Sprung von "1" und einen von "-1" draufgeben wollen dann sind ja
nach dem ersten Sprung die Speicher entsprechend gefüllt. Also müssen
wir beides einzeln (auf Null bezogen) berechnen und hinterher
Superposition anwenden.

> Nur dass kein Missverständnis aufkommt: Wir reden von LTI-Systemen?

ja

Autor: Kenner (Gast)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
@ Unbekannter u. Thomas
1. Überschrift lesen (sample)
2. an die Überschrift halten (hold)
3. nicht über Laplace diskutieren (DSP==Digitale Signal Prozessoren)
4. Z-Transformation verwenden

Autor: Thomas (Gast)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
Hä?!? Was mischst du Halber dich denn jetzt hier in unsere Diskussion
ein? Mag ja sein, dass du dich für nen ganz Großen hälst, weil du
gestern deine erste DSP Vorlesung hattest, aber hat man dir denn nicht
beigebracht, dass man sich zurückzuhalten hat, wenn Erwachsene
miteinander reden?
Die Überschrift lautet "mathematische Grundlagen für DSP", und
Laplace ist ganz eindeutig eine der wichtigsten Grundlagen der
digitalen Signalverarbeitung. Und selbst wenn nicht, dies hier ist ein
Diskussionsforum, und wir unterhalten uns hier über was wir wollen wenn
sich die Diskussion so entwickelt, da hast Du Hampelmann gar nichts zu
melden! Der einzige der hier Off-Topic ist bist übrigens DU. Also, um
mal zurück zum Thema zu kommen:
Erklär mir doch mal bitte in ein paar Worten (gerne auch unter
Zuhilfenahme von Formeln) die Z-Transformation.
Wolln doch mal sehn, ob du auch in der Lage bist, dich auf gleicher
Augenhöhe mit uns zu messen...

Autor: Alex (Gast)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
"So ist z.B. eine Laplace Übertragungsfunktion im Prinzip eine DGL mit
der Einschränkung, dass sich das System zum Zeitpunkt t=0 in einem
eingeschwungenen Zustand befinden muß."

Wie Unbekannter bereits geschrieben hat ist dieses Statement einfach
nur falsch. Anfangsbedingung gibt es sowohl im Zeitbereich als auch in
der Laplace-Ebene, wo wäre sonst die Eineindeutigkeit?!

Ich empfehle dir von Otto Föllinger den Titel "Laplace-,Fourier- und
z-Transformation", danach sind keine Fragen mehr offen. Der Stoff wird
anschaulich und mathematisch korrekt (ohne implizite Annahmen)
vermittelt, etwas das die meisten DSP-Bücher vermissen lassen. Das
Ergebnis sind Ingenieure mit nicht mehr als Halbwissen.

Die z-Transformation ist nach z=e^sT definiert und bildet die
Laplace-Ebene in den Einheitskreis der z-Ebene ab. Anschaulicher und im
amerikanischen Raum zunehmend gebräuchlicher ist die aus dem
delta-Transformation, da man bei ihr für Ts->0 auch wieder die
Laplace-Transformierte erhält, eine Eigenschaft die der
z-Transformation fehlt. In punkto Implementierungsaufwand ist die
z-Transformation jedoch in der Anwendung unschlagbar, die alle moderne
Multiply+Accumulate in einem Takt schaffen.

Achso, und Trolle in Zukunft einfach ignorieren, sonst mutierst du noch
selbst zu einem.

Alex

Autor: Thomas (Gast)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
Ja, der Satz ist scheiße, eine Laplace Übertragungsfunktion ist
natürlich keine DGL! Was ich versucht habe damit auszudrücken war der
Zusammenhang 's' -> 'd/dt' weil ja die Frage nach der Notwendigkeit
von Differentialgleichungen aufkam.

Trotzdem bleibe ich erstmal bei der Aussage, dass Laplace den
eingeschwungenen Zustand und leere Speicher voraussetzt, während man
bei DGLs die Anfangsbedingungen explizit vorgeben kann. Wenn das so
wirklich nicht stimmen sollte hättest du mit deinem Posting ein kleines
Weltbild von mir zerstört ;)

Danke für deine kurze Ausführung zur Z-Transformation, nur hätte ich
das lieber von "Kenner" gehört. Der hätte nämlich bestimmt nur sowas
wie z^-1 = t-1 geschrieben (was ja auch richtig ist). Offensichtlich
ist er ja der Ansicht, dass die Z-Transformation nichts mit Laplace zu
tun hat.

Wenn ich in den nächsten Tagen mal was Zeit finde werde ich einen
Artikel "von Fourier bis zur Z-Transformation" verfassen, auch um mir
selber den ganzen Kram nochmal durch den Kopf gehen zu lassen.

Gruß, Thomas

Autor: Unbekannter (Gast)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
> Trotzdem bleibe ich erstmal bei der Aussage, dass Laplace den
> eingeschwungenen Zustand und leere Speicher voraussetzt, während man
> bei DGLs die Anfangsbedingungen explizit vorgeben kann. Wenn das so
> wirklich nicht stimmen sollte hättest du mit deinem Posting ein
> kleines Weltbild von mir zerstört ;)

Ich glaube da muss ich wirklich an deinem Weltbild rütteln. ;-)

Eine DGL beschreibt ein System. Die Anfangsbedingungen geben den
"Inhalt" der Speicher des Systems an. Die Speicher sind in diesem
Fall Integratoren. Transformiert man nun diese DGL in den Bildbereich
erhält man eine Übertragungsfunktion mit diesen Anfangsbedingungen.
Aber die Speicher müssen nicht leer sein. Sie können es, wenn alle
Anfangsbedingungen 0 sind, sie können aber genauso gut andere Werte
haben. Das ist ein Kritikpunkt an der L-Transformation, dass sie
nämlich immer nur das System für bestimmte Anfangsbedingungen
beschreibt.

Autor: Unbekannter (Gast)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
Noch zur Ergänzung:
Die einzigen Bedingungen, die erfüllt sein müssen sind, dass die DGL
linear (also alle Differentiale linear vorkommen) und zeitinvariant
(konstane Koeffizienten) ist.
Weiterhin liefert die Laplace-Transformierte einer DGL nur Aussagen
über Zeitpunkte t>0, da das Laplace-Integral für t<0 nicht konvergiert.

Autor: Alex (Gast)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
OK, dann die Definition der Laplace-Transformation:

L[f'(t)] = s * F(s) - f(+0)

Der letzte Term wird oft implizit gleich Null gesetzt, er muss es aber
nicht sein.

Analog ergibt sich:

L[f''(t)] = s * L[f'(t)] - f'(+0)
L[f''(t)] = s^2 * F(s) - s * f(+0) - f'(+0)

Hoffe langsam wirds klarer,

Alex :)

Antwort schreiben

Die Angabe einer E-Mail-Adresse ist freiwillig. Wenn Sie automatisch per E-Mail über Antworten auf Ihren Beitrag informiert werden möchten, melden Sie sich bitte an.

Wichtige Regeln - erst lesen, dann posten!

  • Groß- und Kleinschreibung verwenden
  • Längeren Sourcecode nicht im Text einfügen, sondern als Dateianhang

Formatierung (mehr Informationen...)

  • [c]C-Code[/c]
  • [avrasm]AVR-Assembler-Code[/avrasm]
  • [code]Code in anderen Sprachen, ASCII-Zeichnungen[/code]
  • [math]Formel in LaTeX-Syntax[/math]
  • [[Titel]] - Link zu Artikel
  • Verweis auf anderen Beitrag einfügen: Rechtsklick auf Beitragstitel,
    "Adresse kopieren", und in den Text einfügen




Bild automatisch verkleinern, falls nötig
Bitte das JPG-Format nur für Fotos und Scans verwenden!
Zeichnungen und Screenshots im PNG- oder
GIF-Format hochladen. Siehe Bildformate.
Hinweis: der ursprüngliche Beitrag ist mehr als 6 Monate alt.
Bitte hier nur auf die ursprüngliche Frage antworten,
für neue Fragen einen neuen Beitrag erstellen.

Mit dem Abschicken bestätigst du, die Nutzungsbedingungen anzuerkennen.