mikrocontroller.net

Forum: Offtopic Fragen zu Aufgaben


Autor: Markus (Gast)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
Hier handelt es sich um zwei Aufgaben, zum Thema lineare Interpolation 
eines Signals.

1.)

Es soll die Abtastfrequenz des Signals x(k) = 17*cos(k*pi/2) durch eine 
Interpolation nullter Ordnung verdoppeln werden.

Lösung:

Impulse bei Ω(doppelt)=pi/4, 3pi/4, 5pi/4, 7pi/4 und denselben negativen 
Kreisfrequenzen. Die Impulse bei 3pi/4 und 5pi/4 sowie dieselben 
negativen sind gegenüber den anderen um den in Punkt b) errechneten Wert 
gedämpft.

Berechnung: Signal-zu-Störabstand

Bei der Interpolation nullter Ordnung findet die Dämpfung mit 
cos[Ω(doppelt)/2] statt, also Komponente bei Ωdoppelt=pi/4 hat den 
Dämpfungsfaktor 2*cos(pi/8)=1.8478, während die (Stör)Komponente bei 
Ωdoppelt=3pi/4 den Dämpfungsfaktor 2*cos(3pi/8)=0.7654 hat. Damit ist 
SNR=2.4142=7.65 dB

2.)

Gegeben ist das Signal x(t) = y(t)*cos(2*pi*3000*t), wobei y(t) ein 
reelles Tiefpasssignal mit einer Grenzfrequenz B=100 Hz sei. Das Signal 
x(t) wird mit fa1= 8 kHz abgetastet. Das abgetastete Signal wird linear 
auf die Frequenz fa2=16 kHz interpoliert.


a. Skizzieren Sie das Spektrum es linear interpolierten Signals im 
Bereich [-16 kHz, 16 kHz]. Beschriften Sie die Frequenzachse.

Spektrale Anteile bei 3, 5, 11, 13 kHz sowie denselben negativen 
Frequenzen und jeweils +-100 Hz.

b. Berechnen Sie den Signal-zu-Störabstand zwischen dem interpolierten 
Signal und der Störkomponente, jeweils bezogen auf die Mittenfrequenzen 
von Signal und Störung.

Dämpfung erfolgt mit 2cos2Ω/2, also bei f=3 KHz mit 1.3826, bei f=5kHz 
mit 0.6173. Der Signal-zu-Störabstand ist also 20*log(1.38626/0.6173) = 
7 dB.

------------------------------------------------------------------------ 
-
1. Frage:

Warum wird für die Berechnung der Dämpfung einmal 2cos(Ω/2) und dann 
2cos^2(Ω/2)

2. Frage:

Wie kommt man auf die Werte Ω(doppelt)=pi/4, 3pi/4, 5pi/4, 7pi/4 ?

Autor: Markus (Gast)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
Ich sehe da kein konkreten Unterschied, warum hier einmal cos und cos^2 
verwendet wird.

Bitte melde dich an um einen Beitrag zu schreiben. Anmeldung ist kostenlos und dauert nur eine Minute.
Bestehender Account
Schon ein Account bei Google/GoogleMail, Yahoo oder Facebook? Keine Anmeldung erforderlich!
Mit Google-Account einloggen | Mit Yahoo-Account einloggen | Mit Facebook-Account einloggen
Noch kein Account? Hier anmelden.