UND
(Konjunktion)
- [math]\displaystyle{ x = a \wedge b }[/math]
|
a |
b |
x |
0 |
0 |
0 |
0 |
1 |
0 |
1 |
0 |
0 |
1 |
1 |
1 |
|
ODER
Verknüpfung (Disjunktion)
- [math]\displaystyle{ x = a \vee b }[/math]
|
a |
b |
x |
0 |
0 |
0 |
0 |
1 |
1 |
1 |
0 |
1 |
1 |
1 |
1 |
|
NICHT
Verknüpfung (Negation)
- [math]\displaystyle{ x = \overline{a} }[/math]
NAND
Verknüpfung
- [math]\displaystyle{ x = \overline{a \wedge b} }[/math]
|
a |
b |
x |
0 |
0 |
1 |
0 |
1 |
1 |
1 |
0 |
1 |
1 |
1 |
0 |
|
NOR
Verknüpfung (Konjunktion)
- [math]\displaystyle{ x = \overline{a \vee b} }[/math]
|
a |
b |
x |
0 |
0 |
1 |
0 |
1 |
0 |
1 |
0 |
0 |
1 |
1 |
0 |
|
XOR
Exklusiv-ODER-Verknüpfung (Antivalenz)
- [math]\displaystyle{ x = (a \wedge \overline{b}) \vee (\overline{a} \wedge b) }[/math]
|
a |
b |
x |
0 |
0 |
0 |
0 |
1 |
1 |
1 |
0 |
1 |
1 |
1 |
0 |
|
XNOR
Exklusiv-NOR-Verknüpfung (Äquivalenz)
- [math]\displaystyle{ x = (a \wedge b) \vee (\overline{a} \wedge \overline{b}) }[/math]
|
a |
b |
x |
0 |
0 |
1 |
0 |
1 |
0 |
1 |
0 |
0 |
1 |
1 |
1 |
|
Sperrgatter (Inhibition)
- [math]\displaystyle{ x = \overline{a} \wedge b }[/math]
|
a |
b |
x |
0 |
0 |
0 |
0 |
1 |
1 |
1 |
0 |
0 |
1 |
1 |
0 |
|
Subjunktion (Implikation)
- [math]\displaystyle{ x = \overline{a} \vee b }[/math]
|
a |
b |
x |
0 |
0 |
1 |
0 |
1 |
1 |
1 |
0 |
0 |
1 |
1 |
1 |
|