mikrocontroller.net

Forum: Mikrocontroller und Digitale Elektronik PT100: Mathematisches Problem


Autor: Kurfürst (Gast)
Datum:
Angehängte Dateien:

Bewertung
0 lesenswert
nicht lesenswert
Hallo zusammen,

das wichtigste vorneweg: Allzuviel Ahnung von Mathe hab ich nicht...

Mein Problem:
Ein PT100-Messverstärker liefert für Temperaturen kleiner -80°C einen 
Fehler, der bis -200°C immer größer wird.

Im Anhang ist eine Tabelle mit diversen Werten.
Also, z.B. bei -200,0°C liefert der Messverstärker -202,5°C.

Unbefangen wie ich bin, hab das mal in Excel eingegeben und mir das 
xy-Diagramm(blau) zeichnen lassen. Dazu hat Excel die Trendlinie(rot) 
erstellt mit der zugehörigen Formel.

Das Berechnen eines Fehlers hiermit funktioniert bei mir nicht.

Für x = -180° rechne ich wie folgt:

y = -0,0002x^2 - 0,0291x - 1,2969
y = (-0,0002*32400) -(0,0291 * -180) - 1,2969
y =      -6,48      -     -5,238     - 1,2969
y = -2,5389°

Laut Tabelle darf der Fehler nur bei -1,65° liegen.

Was mache ich falsch?

Vielen Dank für eure Hilfe!

Autor: Vlad Tepesch (vlad_tepesch)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
das Problem ist, dass die Regressionskurve nicht sehr viel mit den 
tatsächlichen Zusammenhängen zu tun hat und nur auf deine Messergebnisse 
dahingehend optimiert wurde, dass der Gesamtfehler für die Messwerte 
minimal ist.

berechne mal y(-60°) da wird der Fehler wieder größer, obwohl ich wetten 
könnte, dass der echte Messwert sich immer mehr an Null annähern sollte.

Autor: Kurfürst (Gast)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
Vlad Tepesch schrieb:
> berechne mal y(-60°) da wird der Fehler wieder größer, obwohl ich wetten
> könnte

Ja, bei -60° wird ein fehler von -0,27° berechnet, obwohl in Praxis von 
-80,0° bis +400,0° eine Genauigkeit von 0,1° erreicht wird.

Autor: Zwölf Mal Acht (hacky)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
Bei tiefen Temperaturen nimmt man lieber eine Diode wie Platin. 
Stickstofftemperatur kann man mit einer Diode noch gut messen.

Autor: Karl Heinz (kbuchegg) (Moderator)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
Ich weiß nicht, wie Excel zu dieser Formel kommt, aber IMHO stimmt die 
nicht. Die eingezeichnete Kurve ist damit nicht zu reproduzieren.
Kannst du mal mehr Kommastellen insbesondere beim quadratischen Term 
ansehen.

Autor: Vlad Tepesch (vlad_tepesch)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
Kurfürst schrieb:
> obwohl in Praxis von
> -80,0° bis +400,0° eine Genauigkeit von 0,1° erreicht wird.

das heißt du hast hier noch Messwerte, die du Excel vorenthalten hast
-> auch eingeben
dann wird die Kurve möglicherweise besser.

Außerdem passt das Modell nicht zur Wirklichkeit, will heißen: deine 
Reihe ist nicht quadratisch. Sie sieht eher exponentiell aus.
Wähle also eine exponentielle Trendlinie

Autor: Karl Heinz (kbuchegg) (Moderator)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
Vlad Tepesch schrieb:
> Kurfürst schrieb:
>> obwohl in Praxis von
>> -80,0° bis +400,0° eine Genauigkeit von 0,1° erreicht wird.
>
> das heißt du hast hier noch Messwerte, die du Excel vorenthalten hast
> -> auch eingeben
> dann wird die Kurve möglicherweise besser.

Es ist ein numerisches Problem.
Berücksichtigt man den quadratischen Term mit lediglich einem Faktor von 
-0.0002 dann kommt da Unsinn raus. Der quadratische Term ist viel zu 
dominant und offenbar gerundet.
Da müssen noch mindestens eine Komma-Stelle mehr berücksichtigt werden.

Oder alternativ alle Fehler mal 10 oder mal 100 nehmen, damit die 
Koeffizienten (insbesondere für den quadratischen Term) wieder in 
vernünftige Bereiche kommen.

Autor: Fritze (Gast)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
Habe mal die Daten in Excel eingegeben und beim Typ der Trendlinie 
"Polygonisch" und bei Rehenfolge 3 genommen, zudem noch bei Optionen 
Schnittpunkt mit = 0 reingenommen (hab hier nur Excel200, kann bei 
neueren Versionen anders sein). Jedenfals ergab das dann diese Funktion
y = 6E-07x^3 + 6E-05x^2 + 0,002x, sollte wesentlich besser dazu passen.

Autor: Kurfürst (Gast)
Datum:
Angehängte Dateien:

Bewertung
0 lesenswert
nicht lesenswert
Ich habe mal weitere Messwerte bis +50,0° mitberechnent. Da diese 
zusätzlichen Werte aber alle einen Fehler von 0,0° haben dominieren 
diese auch den Trend bei den Fehlerbehafteten Werten, so dass dort die 
Trendlinie auch optisch sich weiter vom Original entfernt.

Einen logarithmischen Verlauf kann ich auf grund der negativen Werte 
nicht durchführen. Am Anfang meiner Messreihen hatte ich aber mit 
positiven Werten gearbeitet, da hat Excel zwar eine ln(x)-Trendlinie 
gezeichnet, die war aber optisch und rechnerich 'leicht' daneben.

Autor: Fritze (Gast)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
Sorry, hab nur dein hochgeladenes Bild mir angeschaut. Also vorrigen 
Beitrag einfach vergessen. durch das Polynom enstehen 3 Maximas und 
somit stimmt die Funktion durch die Interpolation im wesentlichen nur 
für die Stützstellen, alles was außerhalb liegt ist nicht definiert. 
Somit solltes du für den Breich nach -80°C einfach einen konstanten 
Faktor für den Fehler nehmen (0,1) oder eine lineare Funktion. Und für 
den anderen Bereich (-200 bis -80) die Formel
y = 1E-06x^3 + 0,0003x^2 + 0,0283x + 1,1446,
da diese einigermaßen genau ist.

Autor: Kurfürst (Gast)
Datum:
Angehängte Dateien:

Bewertung
0 lesenswert
nicht lesenswert
Fritze schrieb:
> den anderen Bereich (-200 bis -80) die Formel
> y = 1E-06x^3 + 0,0003x^2 + 0,0283x + 1,1446,

Mit dieser Formel bekomme ich auch Abweichungen > 1°.


Ich habe mal mit der linearen Trendlinie gespielt. Naja, so maximal 0,5° 
Abweichnung ist auch nicht schlecht.(Anhang)

Autor: Peter (Gast)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
Wenn ich die krumme Kurve der Messwerte betrachte, würde ich zuallerst 
die Messwerte hinterfragen, ich denke die sind falsch, bzw. sehr 
ungenau!

Autor: lalala (Gast)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
ich kann mich meinem Vorredner nur anschließen. Ich würde bei einem 
PT100 definitiv bessere Messwerte erhalten. Ich würde mal x-Achse die 
Werte -150, -130 und -100 hinterfragen. Ausreißer können immer dabei 
sein. Aber anhand dieser einen Messkurver wirst du nie eine genaue 
Temperaturauswertung hinbekommen!

Darf ich auch mal fragen, wo du die Messwerte her hast? PT100 ist ein 
doch relativ guter Temperaturwiderstand und mit geeigneter Hardware kann 
man hier durchaus sehr gute Messwerte erziehlen.

Ich kann mir den Spruch nicht vernkeifen:
Wer misst, misst Mist.

Autor: Detlef _a (detlef_a)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
Die Koeffizienten der quadratischen Regression sind zu sehr gerundet. 
Die lauten genauer:
-0.0001733267 x^2 -0.0290809191 x -1.2968531469
Dann kommt für -180 der Wert  -1.6781 raus, der schon ziemlich genau 
ist.

Tritt diesen Excel Müll in die Tonne und nimm was vernünftiges zum 
Rechenen. Excel ist was für Kaufleute, BWLer, Consultants und dynamische 
McKinsey'er, als Ingenieur benutzt man sowas nicht, das ist streng 
verboten und sollte mit Entzug des BA/MA/Diplom bestraft werden.

so ist das
math rulez!
Cheers
Detlef

clear
x=-80:-10:-200;
y=[0 0.1 0.2 0.2 0.3 0.5 0.6 0.9 1 1.3 1.65 2 2.5];
x=x(:);y=y(:);
M=[x.^2 x ones(length(x),1)];
coff=inv(M'*M)*M'*(-y);
disp(sprintf('%.10f ',coff))
plot(x,-y,'b.-',x,M*coff,'r.-');
return

Autor: StinkyWinky (Gast)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
Die Koeffizienten der Trendlinie werden zu stark gerundet. Benütze 
besser die Funktion RGP(), dann bekommst Du genaue Werte.

Beide Varianten werden hier besprochen:
http://www.mp.haw-hamburg.de/pers/Abulawi/Polynomr...

Autor: micha (Gast)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
Man kann in Exel auch das Format der Gleichung (sprich Anzahl der 
dargestellten Dezimalstellen) ändern (jedenfalls bei dem Excel 
(aktuell)hier, ging aber IMHO auch schon früher)

-> Trendline + Gleichung Anzeigen -> rechte Maustause auf Gleichung -> 
"Format Label" und gewünschtes Format einstellen.

Autor: Kurfürst (Gast)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
@Autor: lalala (Gast) & Autor: Peter (Gast)

Diese Messwerte stammen von einer ohmschen Nachbildung des PT100, zu 
deutsch, ein Metallfilm-Spindelpoti wurde mit Keithley-DMM und 
Kelvinanschluss auf den Widerstandswert getrimmt, der laut Tabelle 
EN60751(ITS68) sich beim PT100 einstellt.
Nun hab ich aber schon beim drehen am Poti gemerkt, dass deren Auflösung 
auch nicht unendlich ist, so dass ein- bis zwei zehntel Ohm daneben 
liegen. Allerdings dürften das nur maximal 0,1° Fehler ausmachen.
Ich werd die Ausreißer noch mal kontrollieren.

Ich habe hier zwar einen Prozeßkalibrator für PT100 der die gleiche 
Fehlertendenz bestätigt. Dieser Kalibrator hat aber im Bereich -100° bis 
-200° eine Toleranz von 0,8°.


@Autor: Detlef _a (detlef_a)
@Autor: StinkyWinky (Gast)
Danke für die Tipps. Werd mich in der Nachtschicht damit quälen.


Detlef _a schrieb:
> und sollte mit Entzug des BA/MA/Diplom bestraft werden.

Wo nichts ist kann auch nichts entzogen werden ;-)

Autor: Detlef _a (detlef_a)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
> Detlef _a schrieb:
>> und sollte mit Entzug des BA/MA/Diplom bestraft werden.
>
> Wo nichts ist kann auch nichts entzogen werden ;-)

Auch ohne BA/MA/Diplom sollte man die Finger von diesem Sch**** Excel 
lassen, das taugt nicht.

Cheers
Detlef

Autor: lalala (Gast)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
naja, mich hat das Excel gut durchs Studium gebracht. Aber seien wir 
doch mal ehrlich: Bei einer Messung mit 13 Messpunkte und 4 Ausreißer, 
da kann man doch keine vernünftige Fitting-Kurver erwarten, vor allem, 
wenn 3 von 4 Ausreißer auch noch in die selbe Richtung gehen.

Man kann hier viel wegen Mathematik streiten, aber eine vernünftige 
Messung sollte vorausgehen. Dafür braucht man kein Studium, man sollte 
sich nur mal an den Physikunterricht errinnern!

Autor: Karl Heinz (kbuchegg) (Moderator)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
lalala schrieb:

> da kann man doch keine vernünftige Fitting-Kurver erwarten, vor allem,
> wenn 3 von 4 Ausreißer auch noch in die selbe Richtung gehen.

Die Kurve an sich ist ja nicht so schlecht. Siehe die eingezeichnete 
rote Linie.

Aber: Die Ausgabe der zugehörigen Gleichung ist mies! Die ist bei der 
Ausgabe zu stark gerundet und der Fragesteller hat die Koeffizienten 
ohne sie zu hinterfragen einfach verwendet. Durch diese Rundung hat sich 
aber eine ganz andere (sehr viel schlechtere) Kurve ergeben.

Darum, und nur darum, geht es hier im Sinne der Fragestellung.

Und natürlich auch, dass man auch einem Computer Zahlenwerte nicht 
einfach ins Blaue hinein glaubt, sondern sich erst mal ansieht, was denn 
da eigentlich rausgekommen ist.

Daher auch der Verweis auf BWL-er. Für die reicht es, wenn da was 
rauskommt. Aber ein Techniker muss weiter denken und sich zb fragen:
0.0002, warum 0.0002? Echt, 0.0002 ganz exakt? Nur 1 signifikante 
Stelle? Hmmm. Das glaub ich nicht. Nicht solange da bei mehr 
Kommastellen nicht eine 0.00020 auftaucht. Und siehe da: Bei mehr 
Kommastellen erweist sich dann die 0.0002 als 0.00017 und zusammen mit 
der 2. Potenz von x ergibt das dann schon ganz andere Werte.

Weg von dieser "Das hat ein Computer ausgerechnet also muss es 
stimmen"-Mentalität. Wir sind Naturwissenschafter und keine Power-Point 
Junkies.

Traurig nur, dass ich ihm das am Vormittag schon um die Nase geschmiert 
habe. Jetzt ist Abend und er hat es immer noch nicht umgesetzt.

Autor: Kurfürst (Gast)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
Leute, ihr seid großartig, jeder einzelne!

Karl heinz Buchegger schrieb:
> Traurig nur, dass ich ihm das am Vormittag schon um die Nase geschmiert
> habe.

Ja, du hast recht. Aber ich musste erst mal verstehen was du meinst.
Autor: micha (Gast),Datum: 01.02.2011 16:30 hat mich auf die 
Formatierung bei den Trendoptions gebracht.
Und siehe da, jetzt gibt es nur noch eine Abweichung von ca. 0,1°.
Mit 9 Stellen h.d.K. sieht die Formel so aus:
y = -0,000173327x2 - 0,029080919x - 1,296853147


Karl heinz Buchegger schrieb:
> Jetzt ist Abend und er hat es immer noch nicht umgesetzt.

Doch, jetzt ist es vollbracht. Aber zwischedurch musste ich mal nach 
IKEA...


StinkyWinky schrieb:
> Beide Varianten werden hier besprochen:
> http://www.mp.haw-hamburg.de/pers/Abulawi/Polynomr...

Sehr lehrreich, vielen Dank!

Nochmals besten Dank an allen!

Antwort schreiben

Die Angabe einer E-Mail-Adresse ist freiwillig. Wenn Sie automatisch per E-Mail über Antworten auf Ihren Beitrag informiert werden möchten, melden Sie sich bitte an.

Wichtige Regeln - erst lesen, dann posten!

  • Groß- und Kleinschreibung verwenden
  • Längeren Sourcecode nicht im Text einfügen, sondern als Dateianhang

Formatierung (mehr Informationen...)

  • [c]C-Code[/c]
  • [avrasm]AVR-Assembler-Code[/avrasm]
  • [code]Code in anderen Sprachen, ASCII-Zeichnungen[/code]
  • [math]Formel in LaTeX-Syntax[/math]
  • [[Titel]] - Link zu Artikel
  • Verweis auf anderen Beitrag einfügen: Rechtsklick auf Beitragstitel,
    "Adresse kopieren", und in den Text einfügen




Bild automatisch verkleinern, falls nötig
Bitte das JPG-Format nur für Fotos und Scans verwenden!
Zeichnungen und Screenshots im PNG- oder
GIF-Format hochladen. Siehe Bildformate.
Hinweis: der ursprüngliche Beitrag ist mehr als 6 Monate alt.
Bitte hier nur auf die ursprüngliche Frage antworten,
für neue Fragen einen neuen Beitrag erstellen.

Mit dem Abschicken bestätigst du, die Nutzungsbedingungen anzuerkennen.