Forum: Digitale Signalverarbeitung / DSP / Machine Learning faltung spiegeln


Announcement: there is an English version of this forum on EmbDev.net. Posts you create there will be displayed on Mikrocontroller.net and EmbDev.net.
von Andre R. (ltisystem)


Bewertung
-1 lesenswert
nicht lesenswert
Ganz einfache Frage, wo ich nach einer Stund Google keine Antwort 
gefunden habe:

Warum ist es aus theoretischer Sicht notwendig, bei einer Faltung, eines 
der Signale zu spiegeln?

Das es gemacht werden muss ist klar, aber warum???


Grüße

von Marius W. (mw1987)


Bewertung
0 lesenswert
nicht lesenswert
Wenn du dir das Faltungsintegral anschaust
dann steht im Integral sowas wie
 und du integrierst darüber. Das bedeutet nichts anderes als eine 
Spiegelung des Signals.

Gruß
Marius

von Andre R. (ltisystem)


Bewertung
-1 lesenswert
nicht lesenswert
Marius Wensing schrieb:
> Wenn du dir das Faltungsintegral anschaust
>
> dann steht im Integral sowas wie
 und du integrierst
> darüber. Das bedeutet nichts anderes als eine Spiegelung des Signals.
>
> Gruß
> Marius

Das ist mir schon klar, dass das dort steht, aber warum steht dort das 
minus Tau? Deswegen habe ich ja extra geschrieben aus theoretischer 
Sicht, sry wenn das nicht so hervor ging.

Also ich verstehe die Theorie nicht, warum man die eine Funktion nicht 
einfach ungespiegelt über die andere ziehen kann und davon das Integral 
berechnet.
Ist aus reinem Interesse...

Grüße

: Bearbeitet durch User
von Justus S. (jussa)


Bewertung
0 lesenswert
nicht lesenswert
Andre Richter schrieb:
> Also ich verstehe die Theorie nicht, warum man die eine Funktion nicht
> einfach ungespiegelt über die andere ziehen kann und davon das Integral
> berechnet.

natürlich kann man das. Aber dann ist es eben keine Faltung mehr...da 
kannst du genauso gut fragen, warum man bei der Addition zwei Zahlen 
zusammenzählt und nicht multipliziert...

: Bearbeitet durch User
von Andre R. (ltisystem)


Bewertung
0 lesenswert
nicht lesenswert
Justus Skorps schrieb:
> Andre Richter schrieb:
>> Also ich verstehe die Theorie nicht, warum man die eine Funktion nicht
>> einfach ungespiegelt über die andere ziehen kann und davon das Integral
>> berechnet.
>
> natürlich kann man das. Aber dann ist es eben keine Faltung mehr...da
> kannst du genauso gut fragen, warum man bei der Addition zwei Zahlen
> zusammenzählt und nicht multipliziert...

hm...also muss man sich mit der antwort: "das ist einfach so" begnügen.

Danke trotzdem!


Grüße

von Christoph db1uq K. (christoph_kessler)


Bewertung
0 lesenswert
nicht lesenswert
http://de.wikipedia.org/wiki/Autokorrelation
"...in der Signalverarbeitung als Faltung des zeitabhängigen Signals 
x(t) mit sich selbst..."
Da kann ich mir noch vorstellen, wie zwei Schwingungszüge gegenläufig 
übereinander verschoben werden, und irgendwo eine maximale 
Übereinstimmung auftritt. Vergleichbar mit der Dendrochronologie, wo man 
Baumringabstände miteinander vergleicht.

von Andreas H. (ahz)


Bewertung
0 lesenswert
nicht lesenswert
Andre Richter schrieb:
> hm...also muss man sich mit der antwort: "das ist einfach so" begnügen.

Hm, dann bist Du im falschen Beruf. Das mit dem Glauben war ein anderes 
Fach. Dann mal hier probieren: http://www.priesterseminare.org/

Ansonsten schau Dir mal "graphisch" an, was da passiert, z.B. hier 
http://de.wikipedia.org/wiki/Faltung_%28Mathematik%29
Die Graphiken machen es relativ schnell klar.

Das "strittige" t-\Tau bedeutet eigentlich nichts anderes, als die 
Gewichtung von f() an der Stelle \Tau mit den FRÜHEREN Werten von g(). 
Würd hier g(t+\Tau) stehen, dann müsstest Du "in die Zukunft schauen".

Hth

Grüße
Andreas

von Michael H. (dowjones)


Angehängte Dateien:

Bewertung
2 lesenswert
nicht lesenswert
> hm...also muss man sich mit der antwort: "das ist einfach so" begnügen.
Nein, man kann es auch mal selber nachrechnen. ;-)
Wobei ich die Frage eher umformulieren würde: Statt "Warum ist es nötig
bei der Faltung eines der Signale zu spiegeln?" fänd ich ein "warum wird 
die Formel mit dem Minuszeichen so häufig gebraucht, das sie einen 
eigenen Namen bekam?" angebrachter.

Schauen wir uns das mal an einem LTI-System mit bekannter Impulsantwort 
(Bild 1) an. Ein LTI-System ist durch seine Impulsantwort vollständig 
beschrieben. Wenn man das Eingangssignal aus Impulsen „zusammensetzt“ 
(indem man die Impulse verschiebt und skaliert) dann kann man das 
Ausgangssignal aus den Impulsantworten zusammensetzen (welche man 
gleichermaßen verschiebt und skaliert, Bild 2).

Das Ausgangssignal ergibt sich nun als Überlagerung (Addition) der 
ganzen
Impulsantworten. Also stellen wir zunächst mal die Formeln für die 
einzelnen Antworten auf:

Die einzelnen Kurven unterscheiden sich offensichtlich nur durch eine 
Konstante – nennen wir sie mal τ. Die Überlagerung der einzelnen 
Impulsantworten zu einem Zeitpunkt t lässt sich nun schreiben als:
oder allgemein:

von Detlef _. (detlef_a)


Bewertung
0 lesenswert
nicht lesenswert
Das Minus-Zeichen finde ich sehr anschaulich. Stellt Euch folgenden plot 
vor: ein schwingfähiges gedämpftes System zweiter Ordnung mit einem 
abklingenden Sinus als Impulsantwort. Das System 'faltet' seine 
Impulsantwort mit dem Impuls: "von links" kommt der Impuls, also muß die 
Impulsantwort "von rechts" gespiegelt kommen, damit insgesamt die 
Impulsantwort rauskommt.

Kann ich mir gut vorstellen :))))))

Cheers
Detlef

Antwort schreiben

Die Angabe einer E-Mail-Adresse ist freiwillig. Wenn Sie automatisch per E-Mail über Antworten auf Ihren Beitrag informiert werden möchten, melden Sie sich bitte an.

Wichtige Regeln - erst lesen, dann posten!

  • Groß- und Kleinschreibung verwenden
  • Längeren Sourcecode nicht im Text einfügen, sondern als Dateianhang

Formatierung (mehr Informationen...)

  • [c]C-Code[/c]
  • [code]Code in anderen Sprachen, ASCII-Zeichnungen[/code]
  • [math]Formel in LaTeX-Syntax[/math]
  • [[Titel]] - Link zu Artikel
  • Verweis auf anderen Beitrag einfügen: Rechtsklick auf Beitragstitel,
    "Adresse kopieren", und in den Text einfügen




Bild automatisch verkleinern, falls nötig
Bitte das JPG-Format nur für Fotos und Scans verwenden!
Zeichnungen und Screenshots im PNG- oder
GIF-Format hochladen. Siehe Bildformate.
Hinweis: der ursprüngliche Beitrag ist mehr als 6 Monate alt.
Bitte hier nur auf die ursprüngliche Frage antworten,
für neue Fragen einen neuen Beitrag erstellen.

Mit dem Abschicken bestätigst du, die Nutzungsbedingungen anzuerkennen.