Forum: Offtopic Einheitenkontrolle und die vierte Dimension


Announcement: there is an English version of this forum on EmbDev.net. Posts you create there will be displayed on Mikrocontroller.net and EmbDev.net.
von Ch. M. (matoph)


Bewertung
-6 lesenswert
nicht lesenswert
Guten Abend
Neulich hat mich ein Kollege auf einen Film aufmerksam gemacht, in dem 
gesagt wird, dass die vierte Dimension die Zeit "ist".
Da ich den Film nicht gesehen hatte, fragte ich, was denn seiner Meinung 
nach die erste Dimension sei.
Die Antwort: Der Raum mit seinen drei Dimensionen.

=> Demnach ist die erste Dimension eine Länge [m] .
Gemäss obigem Film gilt also [m*m*m*m] = [s] .
Ist ja interessant; so lässt sich beispielsweise die Geschwindigkeit 
[m/s] ausdrücken in [m/(m*m*m*m)] d.h. in [1/(m*m*m)] .

Was denkt ihr, kann die Einheit der Geschwindigkeit das Reziprok des 
Kubikmeters sein?

Gruss matoph

von Jan H. (j_hansen)


Bewertung
2 lesenswert
nicht lesenswert
Ch. M. schrieb:
> Gemäss obigem Film gilt also [m*m*m*m] = [s] .

Nicht alle vier Dimensionen sind Längen in [m] und das Produkt daraus 
ist die Zeit in [s], sondern die vierte Dimension ist die Zeit in [s].

Es gibt auch mathematische Modelle, die z.B. von elf Dimensionen 
ausgehen.

von Mike B. (mike_b97) Benutzerseite


Bewertung
0 lesenswert
nicht lesenswert
Unsinn
Dimension
1: Länge in m
2: Fläche in m²
3: Raum in m³
4. Zeit in s

Das ganze ergibt nach Einstein (?) eine Raum-Zeit (ein 
Raum-Zeit-Kontinuum) in dem zumindest die Zeit unbegrenzt fort läuft.

Wobei man sagen muss, dass "Profis" (also Physik-Theoretiker, weil 
theoretsicher Physiker klingt komisch) mit 8 oder 9 Dimensionen rechnen, 
7/8 Raumdimensionen und eine Zeit-Dimension.

von Ch. M. (matoph)


Bewertung
-5 lesenswert
nicht lesenswert
Die Dimension ist aber immer noch der Exponent.
Sekunden einsetzen, weil Meter hoch 4 nicht vorstellbar ist, ist 
Verlegenheit.

von E. D. (e-d)


Bewertung
0 lesenswert
nicht lesenswert
"Mathematisch hat man es aber nicht mit einem vierdimensionalen 
Euklidischen Raum zu tun, dem R 4 {\displaystyle \mathbb {R} ^{4}} 
\mathbb {R} ^{4}, sondern mit einem sog. Minkowski-Raum M 4 
{\displaystyle \mathbb {M} ^{4}} \mathbb {M} ^{4}. In diesem Raum haben 
nicht x und ct analoge metrische Struktur, sondern z. B. x und ict, 
wobei c die Lichtgeschwindigkeit und i die „imaginäre Einheit“ der 
komplexen Zahlen ist. Raum und Zeit sind also auch in der speziellen 
Relativitätstheorie nicht völlig identisch, sondern es bleibt die 
Möglichkeit des thermodynamischen Verhaltens " 
(aus:https://de.wikipedia.org/wiki/Zeit#Relativit.C3.A4tstheorie)

Wo bleibt Kurt, wenn man ihn mal braucht?

von Mike B. (mike_b97) Benutzerseite


Bewertung
1 lesenswert
nicht lesenswert
E. D. schrieb:

> Möglichkeit des thermodynamischen Verhaltens "
> (aus:https://de.wikipedia.org/wiki/Zeit#Relativit.C3.A4tstheorie)
>
> Wo bleibt Kurt, wenn man ihn mal braucht?

so tief muss man bei DER Frage des TO gar nicht gehen

von Thomas L. (ics1702)


Bewertung
0 lesenswert
nicht lesenswert
mit dieser App für IOS wird die vierte Dimension erklärt:

http://www.fourthdimensionapp.com/

Gruß Thomas

Bitte melde dich an um einen Beitrag zu schreiben. Anmeldung ist kostenlos und dauert nur eine Minute.
Bestehender Account
Schon ein Account bei Google/GoogleMail, Yahoo oder Facebook? Keine Anmeldung erforderlich!
Mit Google-Account einloggen | Mit Facebook-Account einloggen
Noch kein Account? Hier anmelden.