Forum: Ausbildung, Studium & Beruf Fach Systemdynamik, nonlineare Systeme


Announcement: there is an English version of this forum on EmbDev.net. Posts you create there will be displayed on Mikrocontroller.net and EmbDev.net.
von klausi (Gast)


Bewertung
0 lesenswert
nicht lesenswert
Hallo

dieses Sem. belege ich das Fach, Systemdynamik & Komplexität. Im Prinzip 
geht's um Modellierung von non-linearen Systemen. Software z.B. Matlab 
oder Vensim. Anwendungen: Wachstumstheorien, Feedback Loops. z.B. in 
Biologie, Ingenieurwesen, od. Wirtschaftswissenschaft

Hat jemand schon so etwas in der Art durchgemacht?

Habe ein bisschen Respekt, der Prof. beschreibt und erklärt vieles mit 
mathematischen Gleichungen, die helfen sollen, um das Konzept zu 
verstehen. Der Prof. erklärte es geht ihm eher um das logische 
Grundverständnis, das in der Prüfung abgefragt wird, weniger um 
Differentialgleichungen zu lösen.

z.B. Modelle:
Solow, Kaldor, .. van der Pol Gleichung,
Chaostheorie..

Schon interessant, Logikverständnis hilft da viel..
Gruss
klausi

von Dampf T. (ouuneii)


Bewertung
0 lesenswert
nicht lesenswert
> Hat jemand schon so etwas in der Art durchgemacht?

Nein. Das Fach selbst nicht. Anders schon.

> Der Prof. erklärte es geht ihm eher um das logische Grundverständnis, das in der 
Prüfung abgefragt wird, weniger um Differentialgleichungen zu lösen.


Macht Sinn. Erst mal muss man sich etwas vorstellen koennen, bevor man 
eine Simulation ansetzt. Es ist eben nicht so, dass eine Simulation grad 
alle Fragen beantwortet. Der Parameterraum ist zu gross, viele Parameter 
sind nicht fassbar.

Erst muss man ein Modell haben, welche Parameter wichtig sind, die 
anderen laesst man weg. Dann laesst man die Simulation laufen. Und 
erhaelt irgendwelche Resultate. Und muss die dann interpretieren. Wenn 
die Annahmen schon nicht stimmten, stimmt auch das Resultat nicht, 
stimmt die Schlussfolgerung nicht.

Ja, die Vorlesung ist etwas am Lack kratzen. Alles Weitere kommt nachher 
in der Praxis. Wie allgemein ueblich.

: Bearbeitet durch User
von klausi (Gast)


Bewertung
0 lesenswert
nicht lesenswert
Nochmals drauf zurück:

Als Informatiker ist das echt eine neue, interessante Erfahrung bzw. 
Vorlesung. Nonlineare, deterministische Systeme.. die mit leicht 
veränderten Parametern chaotischen Zustand bewirken können..  aber ist 
auch interessant für mich dann als Systemingenieur.
Viele Mechanismen von zB komplexen, auch wirtschaftlichen Systemen 
kommen auch in der Mechanik vor (zB Van der Polizei Gleichung / 
Oszillationen).

Mit Chaostheorie beschäftigen sich hier auf der techn. Uni eher die 
Physiker.. hab das Fach aber aus Interesse gewählt.

zB Siehe "Logistic Map"
Bei dem
x(n+1) = r * x(n)*(1-n)
Ensteht für kleine Änderungen bei r, Chaos bei r>3,6, warum auch immer 
gibt es danach wieder vereinzelte Regionen ohne Chaos ("windows"). 
Chaos ist aber ein technischer Term und benötigt einen positiven 
Lyapunov Exponent. Die Oszillationen gehen Gen unendlich (Feigenbaum 
Konstante bzw. Period doubling constant).
Wirklich ein interessantes Naturphänomen.
Sieht man die Mandelbrotdiagramme an, erkennt man, wie Formen in der 
Natur entstehen (zB Blumenformen).

von Unwissender User (Gast)


Bewertung
0 lesenswert
nicht lesenswert
klausi schrieb:
> Nochmals drauf zurück:
>
> Als Informatiker ist das echt eine neue, interessante Erfahrung bzw.
> Vorlesung. Nonlineare, deterministische Systeme.. die mit leicht
> veränderten Parametern chaotischen Zustand bewirken können..  aber ist
> auch interessant für mich dann als Systemingenieur.
> Viele Mechanismen von zB komplexen, auch wirtschaftlichen Systemen
> kommen auch in der Mechanik vor (zB Van der Polizei Gleichung /
> Oszillationen).

Zuerst, wenn du schon deutsch schreibst, dann schreib bitte nichtlineare 
Systeme.
Und du müsstest genauer werden mit dem was du nichtlinear nennst...?
Die nichtlineare Systemtheorie ist bei weiten nicht so gut dokumentiert 
wie die lineare und je nach Komplexität muss man da einiges 
unterscheiden, was eine gneauere Beschreibung aus deiner Sicht nötig 
macht.

von Wissenschaftler (Gast)


Bewertung
0 lesenswert
nicht lesenswert
Gibt es ein Skript zur Vorlesung?

von Spastenaufsicht (Gast)


Bewertung
-1 lesenswert
nicht lesenswert
klausi schrieb:
> Sieht man die Mandelbrotdiagramme an, erkennt man, wie Formen in der
> Natur entstehen (zB Blumenformen).
Ui toll und sonst? Mehr bietet diese "Vorlesung" nicht? Das ist ja 
lachhaft.
Hört sich eher nach Seminar an.

von butsu (Gast)


Bewertung
0 lesenswert
nicht lesenswert
Was war nochmal die Frage?

Ach ja:
klausi schrieb:
> Hat jemand schon so etwas in der Art durchgemacht?

Ja, war interessant. Dieses (sehr dichte, gute) Buch haben wir damals 
u.a. benutzt:

https://www.amazon.de/Mathematik-Selbstorganisation-Gottfried-Jetschke/dp/3817112823

Aber was willst du wissen??

von Berufsrevolutionär (Gast)


Bewertung
-1 lesenswert
nicht lesenswert
klausi schrieb:

> z.B. Modelle:
> Solow, Kaldor, .. van der Pol Gleichung,
> Chaostheorie..

Kalter Kaffee, das wurde schon 1953 auf einem Röhrenrechner -dem MANIAC 
I- simuliert: https://de.wikipedia.org/wiki/Fermi-Pasta-Ulam-Experiment

von DrIng (Gast)


Bewertung
0 lesenswert
nicht lesenswert
Ja, nichtlinear ist besser.

Und was willst du hören?

von klausi (Gast)


Bewertung
0 lesenswert
nicht lesenswert
Spastenaufsicht schrieb:
> Ui toll und sonst? Mehr bietet diese "Vorlesung" nicht? Das ist ja
> lachhaft.
> Hört sich eher nach Seminar an.
Schlaumeier, das war natürlich nur eine von 12 Vorlesungen in dem Gebiet 
der Systemdynamik.

butsu schrieb:
> Aber was willst du wissen??
Grundsätzlich ist die Aussage, dass kleinste Veränderungen beim 
Anfangszustand sehr grosse Unterschiede beim Output verursachen können.

Im Prinzip: ist die Frage, ob man so ein theoretisches Wissen, mit dem 
sich Physiker u. Mathematiker beschäftigen, später auch in der Praxis 
anwenden kann?

Unwissender User schrieb:
> Und du müsstest genauer werden mit dem was du nichtlinear nennst...?
Den Unterschied zw. linearen und nichtlinearen Abläufen kennst du?

von Berufsrevolutionär (Gast)


Bewertung
0 lesenswert
nicht lesenswert
klausi schrieb:
> Spastenaufsicht schrieb:
>> Ui toll und sonst? Mehr bietet diese "Vorlesung" nicht? Das ist ja
>> lachhaft.
>> Hört sich eher nach Seminar an.
> Schlaumeier, das war natürlich nur eine von 12 Vorlesungen in dem Gebiet
> der Systemdynamik.
>
> butsu schrieb:
>> Aber was willst du wissen??
> Grundsätzlich ist die Aussage, dass kleinste Veränderungen beim
> Anfangszustand sehr grosse Unterschiede beim Output verursachen können.
>
> Im Prinzip: ist die Frage, ob man so ein theoretisches Wissen, mit dem
> sich Physiker u. Mathematiker beschäftigen, später auch in der Praxis
> anwenden kann?

Nicht nur die, auch Elektrotechniker.
In den Neunziger gabs einen Sonderforschungsbereich dazu, da sind ganze 
Studenten-Jahrgänge durch Vorlesungsreihen "Stochaistische Systeme" und 
"Chaostheorie" gechickt worden. Chaostheorie und Fraktale Geometrie 
hatte damals dank "Jurasic Park" einen Hype. Praktische Anwendung eher 
mau, Prof erzählte mal von einem Zufallsgenerator und Verschlüsselung 
basierend auf nichtlineare Systeme, den er voller  Stolz auf der 
Konferenz vortsellt und noch vor Ort geknackt wurde. In D brach der 
Forschungshype in Folge eines (nicht gut recherchierten) 
Spiegel-artikels und wachsender Kritik 
(https://de.wikipedia.org/w/index.php?title=Chaosforschung&oldid=83428123#Kritik 
) weitgehend zusammen. 
(http://www.spiegel.de/spiegel/print/d-13680242.html ?)

 In Zusammenhang mit Monsterwellen werden Solitons herangezogen 
(https://en.wikipedia.org/wiki/Draupner_wave) aber nicht wirklich als 
Erklärungsmodell akzeptiert. Aktuell wird in der Optik mit nichtlinearen 
Ansätzen gearbeitet, aber das ist sehr viel akademischer Elfenbeinturm. 
In meinem Bekanntenkreis haben einige in diesem Dunstkreis promoviert, 
aber verdienen jetzt ihre Brötchen mit (C-)Programmierung und ähnlichen. 
Mit nichtlinenaren System haben die nix mehr am Hut.

von Zocker_50 (Gast)


Bewertung
0 lesenswert
nicht lesenswert
> Re: Fach Systemdynamik, nonlineare Systeme

Mach Inbetriebnahme, da kommt opperative Dynamik zum tragen, da geht es 
immer linear gerade aus. Da zählt nur das die Anlage anschließend läuft, 
der Rest ist Käse.

von klausi (Gast)


Bewertung
0 lesenswert
nicht lesenswert
Berufsrevolutionär schrieb:
> In meinem Bekanntenkreis haben einige in diesem Dunstkreis promoviert,
> aber verdienen jetzt ihre Brötchen mit (C-)Programmierung und ähnlichen.
> Mit nichtlinenaren System haben die nix mehr am Hut.

Vielen Dank für deine "Insights"!!
Na damn habe ich aber schon viel mit deinen Bekannten gemeinsam: habe 
mich mit nicht linearen Systemen beschäftigt und auch schon C 
programmiert ?.

Zocker_50 schrieb:
> Re: Fach Systemdynamik, nonlineare Systeme
>
> Mach Inbetriebnahme, da kommt opperative Dynamik zum tragen, da geht es
> immer linear gerade aus. Da zählt nur das die Anlage anschließend läuft,
> der Rest ist Käse.

Nach klar Hauptsache s'läuft.
Und es gibt genug zum saufen und zum kloppen.
Vielleicht noch eine schöne Barmieze zum Dessert im Hotelzimmer.

von klausi (Gast)


Bewertung
0 lesenswert
nicht lesenswert
(*) entschuldigt ein paar Tippschwierigkeiten. Am Desktop macht es sich 
einfacher als wie am Touch-Phone.

Antwort schreiben

Die Angabe einer E-Mail-Adresse ist freiwillig. Wenn Sie automatisch per E-Mail über Antworten auf Ihren Beitrag informiert werden möchten, melden Sie sich bitte an.

Wichtige Regeln - erst lesen, dann posten!

  • Groß- und Kleinschreibung verwenden
  • Längeren Sourcecode nicht im Text einfügen, sondern als Dateianhang

Formatierung (mehr Informationen...)

  • [c]C-Code[/c]
  • [code]Code in anderen Sprachen, ASCII-Zeichnungen[/code]
  • [math]Formel in LaTeX-Syntax[/math]
  • [[Titel]] - Link zu Artikel
  • Verweis auf anderen Beitrag einfügen: Rechtsklick auf Beitragstitel,
    "Adresse kopieren", und in den Text einfügen




Bild automatisch verkleinern, falls nötig
Bitte das JPG-Format nur für Fotos und Scans verwenden!
Zeichnungen und Screenshots im PNG- oder
GIF-Format hochladen. Siehe Bildformate.
Hinweis: der ursprüngliche Beitrag ist mehr als 6 Monate alt.
Bitte hier nur auf die ursprüngliche Frage antworten,
für neue Fragen einen neuen Beitrag erstellen.

Mit dem Abschicken bestätigst du, die Nutzungsbedingungen anzuerkennen.