Forum: HF, Funk und Felder Kapazität von nebeineinanderliegenden Platten


Announcement: there is an English version of this forum on EmbDev.net. Posts you create there will be displayed on Mikrocontroller.net and EmbDev.net.
von Kapa Zität (Gast)


Angehängte Dateien:

Bewertung
-1 lesenswert
nicht lesenswert
Hallo,

die Kapazitätsformel für einen Plattenkondensator ist ja hinlänglich 
bekannt. Eine andere "Standardanordnung" sind zwei nebeneinanderliegende 
Platten in Luft (eps_r = 1) mit Abstand D und Breite B.

Gibt es eine geschlossene Formel oder Näherungsformel für diese 
Anordnung?

Mir würden unendlich lange Platten ausreichen, optional gerne natürlich 
auch eine Formel für L endlich lange.

Es Danke schonmal im Voraus!
Kapa Zität

: Verschoben durch Admin
von Georg M. (g_m)


Bewertung
0 lesenswert
nicht lesenswert
Kapa Zität schrieb:
> Eine andere "Standardanordnung" sind zwei nebeneinanderliegende
> Platten in Luft (eps_r = 1) mit Abstand D und Breite B.

In diesem Fall sind die Platten fast nur Anschlussdrähte des 
"Kondensators".


Wikipedia:
Eine Berechnung der Kapazität erfordert die Kenntnis des elektrischen 
Feldes.
In komplizierteren Fällen existiert keine geschlossene Form der Lösung.

von Felix A. (davinciclaude)


Bewertung
-5 lesenswert
nicht lesenswert
Kondensatorfläche = Breite x Kupferdicke?

von U. B. (pasewalker)


Bewertung
0 lesenswert
nicht lesenswert
Natürlich ist die Kapazität der Plattenanordnung bei grösserer Länge L 
ebenfalls grösser (nicht im gleichen Verhältnis, versteht sich).

Bei  L → 0  hätte man bekanntlich fogendes Feldlinienbild:
https://de.wikipedia.org/wiki/Datei:VFPt_dipole_electric.svg

Es gibt also auch "Feldlinien", die nicht nur direkt zwischen den 
elektrischen Polen verlaufen, sondern jeweils weiter nach aussen.
Bei  L → ∞  gilt also  C → ∞ .

(Näherungsweises) Berechnen mit Finite-Elemente-Methode (?).

von Georg M. (g_m)


Bewertung
-3 lesenswert
nicht lesenswert
In der Formel für die elektrische Kapazität des Plattenkondensators 
figuriert die Dicke des Dielektrikums, aber die Dicke der Elektroden ist 
irrelevant.
Auch wenn wir die Dicke der Elektroden z.B. um Faktor 100 (z.B. 10µm ... 
1mm) ändern würden – und das ist im Nahbereich, nicht im Unendlichen – 
würde die Kapazität gleich bleiben.

von A. D. (egsler)


Bewertung
2 lesenswert
nicht lesenswert
U. B. schrieb:
> Bei  L → ∞  gilt also  C → ∞ .

Bist du dir da sicher? Der Zugewinn an Kapazität wird ja sicherlich sehr 
schnell kleiner, ich vermute also eher, dass man sich einem Grenzwert 
nähert... oder nicht?

von U. B. (pasewalker)


Bewertung
-2 lesenswert
nicht lesenswert
>> Bei  L → ∞  gilt also  C → ∞ .

> Bist du dir da sicher?

Nehme ich einfach an.
Anschaulich (und untechnisch) ausgedrückt:

Hätte man Wechselspannung an den Platten, gäbe es einen (differentiell 
kleinen) Verschiebungsstrom entlang jeder Feldlinie, bei DC nur im 
Moment des Aufladens.
Bei einer gegebenen Länge der Platten gibt es ein bestimmtes 
Feldlinienbild.
Es sieht doch so aus, dass bei Verlängerung in jedem Fall weitere 
Feldlinien und damit Verschiebungsstrom hinzukommen, ergo wächst die 
Kapazität.

von Winfried J. (Firma: Nisch-Aufzüge) (winne) Benutzerseite


Bewertung
0 lesenswert
nicht lesenswert
U. B. schrieb:
>>> Bei  L → ∞  gilt also  C → ∞ .
>
>> Bist du dir da sicher?
>
> Nehme ich einfach an.
> Anschaulich (und untechnisch) ausgedrückt:
>
> Hätte man Wechselspannung an den Platten, gäbe es einen (differentiell
> kleinen) Verschiebungsstrom entlang jeder Feldlinie, bei DC nur im
> Moment des Aufladens.
> Bei einer gegebenen Länge der Platten gibt es ein bestimmtes
> Feldlinienbild.
> Es sieht doch so aus, dass bei Verlängerung in jedem Fall weitere
> Feldlinien und damit Verschiebungsstrom hinzukommen, ergo wächst die
> Kapazität.

joop

du erhältst irgendwann einen gestreckten Dipol.

Allerdings werden die Feldlinien auch länger was den Kapazitätszuwachs 
sinken lässt. C wächst so asymptotisch.

: Bearbeitet durch User
von U. B. (pasewalker)


Bewertung
0 lesenswert
nicht lesenswert
> C wächst so asymptotisch.

Fragt sich nur noch, bis wohin ?

von Winfried J. (Firma: Nisch-Aufzüge) (winne) Benutzerseite


Bewertung
0 lesenswert
nicht lesenswert
Das hängt vom die elektricum und den absoluten maßen ab.

Namaste

von Winfried J. (Firma: Nisch-Aufzüge) (winne) Benutzerseite


Bewertung
0 lesenswert
nicht lesenswert
Das hängt vom Dielektricum und den absoluten maßen ab.

Namaste

von U. B. (pasewalker)


Bewertung
0 lesenswert
nicht lesenswert
> Das hängt vom die elektricum ...

Wenn das Dielektrikum gegeben und überall gleich ist (also auch isotrop 
d.h. ungerichtet!), ist das egal.

> ... und den absoluten maßen ab.

Und was kommt dann raus?              ;-)

von Bernd K. (prof7bit)


Bewertung
0 lesenswert
nicht lesenswert
U. B. schrieb:
> Bei  L → ∞  gilt also  C → ∞ .

Vermute ich ebenfalls (spontan aus dem Bauch raus).

von Winfried J. (Firma: Nisch-Aufzüge) (winne) Benutzerseite


Bewertung
0 lesenswert
nicht lesenswert
Oh je;

ich mag nicht. ;(

Du könntest die Formel für den Plattenkondensator teilen in den 
homogenen Feldanteil und den inhomogen Teil in dem du über L 
integrierst. Dann must du noch die Intervallgrenzen definieren.

Namaste

von H. O. (oster)


Bewertung
1 lesenswert
nicht lesenswert
Winfried J. schrieb:
> ich mag nicht. ;(

Wer der Mathematik konformer Abbildungen der Seiten 4-7 folgen kann ...
Auch wenn es primaer um gedruckte Kondensatoren geht.


https://www.researchgate.net/profile/Rui_Igreja2/publication/223437532_Analytical_evaluation_of_the_interdigital_electrodes_capacitance_for_a_multi-layered_structure/links/00b495224e7cd97c96000000.pdf

von Bernd K. (prof7bit)


Bewertung
0 lesenswert
nicht lesenswert
Bernd K. schrieb:
> U. B. schrieb:
>> Bei  L → ∞  gilt also  C → ∞ .
>
> Vermute ich ebenfalls (spontan aus dem Bauch raus).

Der Gedankengang meiner Spekulation geht ungefähr so:

Ein einzelner Streifen für sich allein betrachtet hätte schonmal eine 
Kapazität C_einzel gegenüber dem unendlichen Raum die unter anderem von 
der Länge des Streifens abhängt (bei einem zylindrischer Leiter zum 
Beispiel wäre diese proportional zur Länge, bei einem Streifen wird 
ähnliches gelten) bei unendlicher Länge dann also ebenfalls unendlich.

Zwei unendliche Streifen (in unendlichem Abstand) gegeneinander wären 
die Reihenschaltung zweier solcher Kapazitäten = C_einzel / 2, also 
ebenfalls unendlich.

Wenn sie näher beieinander liegen wie hier käme zusätzlich noch die 
Kapazität der beiden Streifen gegeneinander hinzu.

: Bearbeitet durch User
von Winfried J. (Firma: Nisch-Aufzüge) (winne) Benutzerseite


Bewertung
0 lesenswert
nicht lesenswert
H. O. schrieb:
> Winfried J. schrieb:
>> ich mag nicht. ;(
>
> Wer der Mathematik konformer Abbildungen der Seiten 4-7 folgen kann ...
> Auch wenn es primaer um gedruckte Kondensatoren geht.
>
>
> 
https://www.researchgate.net/profile/Rui_Igreja2/publication/223437532_Analytical_evaluation_of_the_interdigital_electrodes_capacitance_for_a_multi-layered_structure/links/00b495224e7cd97c96000000.pdf


Eben das macht man nicht mit nem Einzeiler, obwohl so schwer ist's 
nicht.
Vor 30 Jahren hätt ich's aufm Knie gemacht, heut brauch ich's nicht 
mehr.
 ;)

Formale Fleißarbeit heute machen sowas tools, man muss nur wissen welche 
und sie richtig nutzen. nein die Aufgabe stellt sich mir fast nie, 
deswegen benötige ich so etwas nicht und kenne sie auch nicht.

Hausaufgaben für Studenten halt oder aus langer Weile Studierende.

Namaste

von Georg M. (g_m)


Bewertung
0 lesenswert
nicht lesenswert
Bernd K. schrieb:
> Ein einzelner Streifen für sich allein betrachtet hätte schonmal eine
> Kapazität C_einzel gegenüber dem unendlichen Raum die unter anderem von
> der Länge des Streifens abhängt (bei einem zylindrischer Leiter zum
> Beispiel wäre diese proportional zur Länge, bei einem Streifen wird
> ähnliches gelten) bei unendlicher Länge dann also ebenfalls unendlich.

Wenn es um die Kapazität eines elektrischen Leiters gegen unendlich 
geht, dann ist der einfach unendliche Raum für diesen unendlichen Leiter 
nicht unendlich genug.

Antwort schreiben

Die Angabe einer E-Mail-Adresse ist freiwillig. Wenn Sie automatisch per E-Mail über Antworten auf Ihren Beitrag informiert werden möchten, melden Sie sich bitte an.

Wichtige Regeln - erst lesen, dann posten!

  • Groß- und Kleinschreibung verwenden
  • Längeren Sourcecode nicht im Text einfügen, sondern als Dateianhang

Formatierung (mehr Informationen...)

  • [c]C-Code[/c]
  • [code]Code in anderen Sprachen, ASCII-Zeichnungen[/code]
  • [math]Formel in LaTeX-Syntax[/math]
  • [[Titel]] - Link zu Artikel
  • Verweis auf anderen Beitrag einfügen: Rechtsklick auf Beitragstitel,
    "Adresse kopieren", und in den Text einfügen




Bild automatisch verkleinern, falls nötig
Bitte das JPG-Format nur für Fotos und Scans verwenden!
Zeichnungen und Screenshots im PNG- oder
GIF-Format hochladen. Siehe Bildformate.
Hinweis: der ursprüngliche Beitrag ist mehr als 6 Monate alt.
Bitte hier nur auf die ursprüngliche Frage antworten,
für neue Fragen einen neuen Beitrag erstellen.

Mit dem Abschicken bestätigst du, die Nutzungsbedingungen anzuerkennen.