Forum: Analoge Elektronik und Schaltungstechnik Wickeltechnik für Zylinderspulen


Announcement: there is an English version of this forum on EmbDev.net. Posts you create there will be displayed on Mikrocontroller.net and EmbDev.net.
von Timmy (Gast)


Bewertung
0 lesenswert
nicht lesenswert
Hallo,

ich habe derzeit ein Problem mit einem Widerspruch.

Ich wickle 100 Lagen auf einen Kunststoffkern mit einem Durchmesser von 
17cm. Die Spulenlänge ist gut 4cm. Es handelt sich also um eine kurze 
Spule. Die Induktivität ist so 3mH. Wenn ich jetzt die Wicklungen enger 
zusammendrücke, steigt die Induktivität. Allerdings sagt Wikipedia, dass 
lange Zylinderluftspulen eine höhere Induktivität haben als kurze.

Was stimmt denn nun?

PS: Induktivität mit einem LCR Meter bei 10 kHz gemessen.

von Helmut S. (helmuts)


Bewertung
0 lesenswert
nicht lesenswert
Wikipedia dagt kürzere Länge gleich höhere Induktivität.

https://de.wikipedia.org/wiki/Zylinderspule

L = u0*N^2*A/(länge + 0,9*radius)

von HST (Gast)


Angehängte Dateien:

Bewertung
-1 lesenswert
nicht lesenswert
Bei gleicher Windungszahl steigt die Induktivität mit kleinerer Länge. 
Siehe Beispiel.
MfG,  Horst

von Dieter F. (Gast)


Bewertung
0 lesenswert
nicht lesenswert
Timmy schrieb:
> Allerdings sagt Wikipedia, dass
> lange Zylinderluftspulen eine höhere Induktivität haben als kurze.

Link?

von Timmy (Gast)


Bewertung
0 lesenswert
nicht lesenswert
Dieter F. schrieb:
> Timmy schrieb:
>> Allerdings sagt Wikipedia, dass
>> lange Zylinderluftspulen eine höhere Induktivität haben als kurze.
>
> Link?

https://wetec.vrok.de/rechner/cspule.htm?form=&e_N=100&e_l=35&s_l=-3&e_D=170&s_D=-3&e_A=201%2C062&s_A=-6&e_micro_r=1&e_k=&e_L1=&e_L2=&ENTER=Berechne

von Timmy (Gast)


Bewertung
0 lesenswert
nicht lesenswert
https://de.wikipedia.org/wiki/Induktivit%C3%A4t#Induktivit.C3.A4t_einer_Zylinderspule

Die (sonst identische) Formel für kurze Spulen hat im Nenner l+Zeug. Die 
für lange Spulen nur l.

von Helmut S. (helmuts)


Bewertung
0 lesenswert
nicht lesenswert
Timmy schrieb:
> Dieter F. schrieb:
>> Timmy schrieb:
>>> Allerdings sagt Wikipedia, dass
>>> lange Zylinderluftspulen eine höhere Induktivität haben als kurze.
>>
>> Link?
>
> 
https://wetec.vrok.de/rechner/cspule.htm?form=&e_N=100&e_l=35&s_l=-3&e_D=170&s_D=-3&e_A=201%2C062&s_A=-6&e_micro_r=1&e_k=&e_L1=&e_L2=&ENTER=Berechne

Und wo ist jetzt das Problem?
Kleinere Länge ergibt größere Induktivität.

von Theor (Gast)


Bewertung
0 lesenswert
nicht lesenswert
Timmy schrieb:
> Hallo,
>
> ich habe derzeit ein Problem mit einem Widerspruch.
>
> Ich wickle 100 Lagen auf einen Kunststoffkern mit einem Durchmesser von
> 17cm. Die Spulenlänge ist gut 4cm. Es handelt sich also um eine kurze
> Spule. Die Induktivität ist so 3mH. Wenn ich jetzt die Wicklungen enger
> zusammendrücke, steigt die Induktivität. Allerdings sagt Wikipedia, dass
> lange Zylinderluftspulen eine höhere Induktivität haben als kurze.
>
> Was stimmt denn nun?

Im Zweifel hat die Realität recht und die Theorie unrecht.
Vermutlich ist aber die Theorie nur unvollständig. :-)


Der Abschnitt setzt eine eng gewickelte Spule voraus. Falls Du aber 
die Windungen zusammendrücken kannst, ohne dabei die Windungszahl zu 
vermindern und den Wickeldurchmesser zu erhöhen, dann ist das keine eng 
gewickelte Spule.

von Axel S. (a-za-z0-9)


Bewertung
0 lesenswert
nicht lesenswert
Timmy schrieb:
> 
https://de.wikipedia.org/wiki/Induktivit%C3%A4t#Induktivit.C3.A4t_einer_Zylinderspule
>
> Die (sonst identische) Formel für kurze Spulen hat im Nenner l+Zeug. Die
> für lange Spulen nur l.

Ja. Und? Ändert sich dadurch etwas am qualitativen Verhalten?

Mit wachsendem l wird der Nenner ja trotzdem noch größer und L damit 
kleiner. Kannst du eigentlich irgend etwas richtig?

von Axel S. (a-za-z0-9)


Bewertung
0 lesenswert
nicht lesenswert
Theor schrieb:
>> Was stimmt denn nun?
>
> Im Zweifel hat die Realität recht und die Theorie unrecht.
> Vermutlich ist aber die Theorie nur unvollständig. :-)

Oder der TE hat einfach nur Tomaten auf den Augen und Theorie und 
Realität stimmen überein, ohne daß er es merkt ...

von Michael B. (laberkopp)


Bewertung
0 lesenswert
nicht lesenswert
Oder die Windungskapazität steigt wenn die Drähte näher zusammenkommen, 
dadurch ändert sich die Resonenzfrequenz der Spule und das Messgerät 
misst auf Grund seines Messverfahrens alles mögliche bloss nicht die 
pure Induktivität und lässt sich davon beeinflussen.

von Homo Habilis (Gast)


Bewertung
0 lesenswert
nicht lesenswert
Michael B. schrieb:
> Oder die Windungskapazität...

Mag u. den v. D. genannten U. möglich sein.
Aber hier (da oben) wurde nicht gemessen, sondern berechnet.

Fakt ist: Auch der verlinkte Online-Rechner gibt bei einer leichten 
Verkürzung der Spulenlänge etwas höhere Werte aus (sowohl links bei "L 
nach Wi..." als auch rechts bei "L a. m. k" - ganz wie die Realität es 
auch zeigt.

@Timmy - Du liegst da wirklich falsch.

Timmy schrieb:
> Die (sonst identische) Formel für kurze Spulen hat im Nenner l+Zeug. Die
> für lange Spulen nur l.

Äh - ja, und? (Ich wiederhole Axel´s Ansinnen mit leicht anderen 
Worten):

Bei der Formel für sehr lange Zylinderspulen wird der Radius nicht 
berücksichtigt (weil, je länger, desto weniger Einfluß fürs Ergebnis). 
Das aber ist auch schon alles.

Denn trotzdem steht bei beiden Formeln auch l (die Spulenlänge) im 
Nenner. Je kürzer, desto höher der Wert von L (Induktivität).

Wenn l (wie bei Deiner kurzen Spule der Fall) im Verhältnis zu 
Durchmesser/Radius recht gering ist, führt schon eine betragsmäßig recht 
geringe Änderung ("leichtes Zusammendrücken") zu 
sehr_viel_höherer_Induktivität ...

von Timmy (Gast)


Bewertung
-3 lesenswert
nicht lesenswert
Ihr seht das viel zu oberflächlich. Natürlich gehe ich immer davon aus, 
dass es eng gewickelt ist. Wie blöd muss man sein, freiwillig einen 
Luftspalt zu bilden? Dass das verschwendetes Potential ist, sollte 
eigentlich überhaupt nicht diskutiert werden. Warum hier so ein Scheiss 
angenommen wird, ist mir unbegreiflich.

Vielleicht ist es auch zu viel erwartet, anzunehmen, dass klar ist, dass 
eine eng gewickelte Spule beim zusammendrücken automatisch Lagen bildet 
(wilde Wicklung).

Deshalb formulier ich es anders. Was ist bei einem Drahtdurchmesser von 
0.3mm besser?

Länge=10cm Lagen=1

oder

Länge=1cm Lagen=10

von Timmy (Gast)


Bewertung
0 lesenswert
nicht lesenswert
Wenn ich beim Onlinerechner Durchmesser=100mm Wicklungen=100 µr=1 
eingebe, erhalte ich für eine kurze Spule 1,234mH. Klicke ich auf "lange 
Spule" erhalte ich 2.82mH. Demnach heisst das, dass eine einlagige lange 
Spule besser wäre als eine mehrlalgige kurze Spule. Und das 
widerspricht sich mit meinen Beobachtungen.

von Werner H. (werner45)


Bewertung
0 lesenswert
nicht lesenswert
Das ist die Falle bei allen Online-Rechnern.

Man weiß nie, welche Formeln im Hintergrund verwendet werden. Man hat 
zwar sofort ein Ergebnis, aber ist das denn auch richtig? Da würde ich 
mich NIE drauf verlassen, vor Allem beim Verlassen des unbekannten 
Gültigkeitsbereichs.

Gerade bei Induktivitäten, die von der idealen Annahme abweichen, sind 
in jedem Fall Korrekturen zur Grundformel anzubringen, um die 
errechneten Werte einer tatsächlich gemessenen Induktivität 
anzugleichen.

In einem alten Arbeitsblatt der Zeitschrift "Elektronik" waren die mal 
alle aufgelistet. Für jede Spulenform (rund, eckig, Schleife, lang, 
kurz, mehrlagig, Drahtabstand usw.) war eine andere Formel nebst deren 
Gültigkeitsgrenzen angegeben.

Wenn das Ergebnis genau werden muß, würde ich nie einen Onlinerechner 
verwenden, sonderen mir die passende Formel in Excel/Calc hineinhacken 
und dann damit arbeiten. Da könnte man sogar mehrere Formeln eingeben 
und die Ergebnisse vergleichen. Und sich die prozentualen Abweichungen 
auch anzeigen lassen.

Gruß   -   Werner

von Axel S. (a-za-z0-9)


Bewertung
0 lesenswert
nicht lesenswert
Timmy schrieb:
> Wenn ich beim Onlinerechner Durchmesser=100mm Wicklungen=100 µr=1
> eingebe, erhalte ich für eine kurze Spule 1,234mH. Klicke ich auf "lange
> Spule" erhalte ich 2.82mH.

Dann rechnet dieser Online-Rechner entweder falsch.
Oder (wahrscheinlicher) du benutzt ihn falsch.

Denn "lange Spule" bedeutet einfach nur, daß die Länge viel größer ist 
als der Durchmesser. So daß sich der Nenner in der Formel durch das 
weglassen des Anteils, der auf den Radius zurückgeht, kaum noch ändert. 
Genau das ist bei deiner Spule aber gar nicht gegeben. Wenn du dem 
Onlinerechner also sagst: "meine Spule ist lang, rechne mit der 
Vereinfachung für lange Spulen", dann belügst du den Onlinerechner und 
in Folge kriegst du auch ein falsches Ergebnis zurück.

Andererseits erschließt sich mir nicht, warum man einen Onlinerechner 
überhaupt mit verschiedenen Formeln rechnen lassen sollte. Früher, als 
man noch mit dem Rechenschieber gerechnet hat, mag eine vereinfachte 
Formel für "lange" Spulen ja noch sinnvoll gewesen sein. Aber heute, wo 
man nur noch ein paar Werte in ein paar Felder eintippen muß, kann man 
doch problemlos immer mit der richtigen Formel rechnen.

von Werner H. (werner45)


Bewertung
0 lesenswert
nicht lesenswert
...vorausgesetzt, es lauern die richtigen Formeln im Hintergrund.

Für Zylinderspulen ist das Verhältnis Durchmesser zu Länge wichtig.
Dafür gab es Diagramm, aus dem man den Korrekturwert ablesen durfte.
Der Abstand der Windungen ist auch wichtig.
Wenn diese Eingaben in einem Onlinerechner fehlen, ist dieser wertlos, 
weil man falsche Schlüsse zieht.

Gruß   -   Werner

: Bearbeitet durch User
von Timmy (Gast)


Bewertung
0 lesenswert
nicht lesenswert
Das beantwortet aber nicht die Frage.

Was bringt mehr Induktivität?

Länge=10cm Lagen=1

oder

Länge=1cm Lagen=10

(Luftspule in Zylinderform)

von Axel S. (a-za-z0-9)


Bewertung
0 lesenswert
nicht lesenswert
Timmy schrieb:
> Das beantwortet aber nicht die Frage.
>
> Was bringt mehr Induktivität?
>
> Länge=10cm Lagen=1
> oder
> Länge=1cm Lagen=10

Das ist trivial zu beantworten. Die Formel wurde oben schon genannt.
Und auch ein Onlinerechner würde dir zumindest Hausnummern angeben,
wenn du ihm die Werte korrekt eingibst.

von Timmy (Gast)


Bewertung
0 lesenswert
nicht lesenswert
Demzufolge heisst das also: Wenn ich 100 Windungen haben möchte, sollte 
ich am besten 100 Lagen nehmen, da dann die Induktivität extrem hoch 
wird?

von Helmut S. (helmuts)


Bewertung
0 lesenswert
nicht lesenswert
Timmy schrieb:
> Demzufolge heisst das also: Wenn ich 100 Windungen haben möchte, sollte
> ich am besten 100 Lagen nehmen, da dann die Induktivität extrem hoch
> wird?

Wenn deine Spule hoch wird, dann steigt der mittlere Radius den du in 
die Formel packen musst. Deshalb gibt es auch dort ein Optimum.
Genaugenommen solltest du nach eine Formel suchen die 3 Maße enthält.
Länge
Radius
Wickelhöhe

Falls du keine findest, dann mache Radius = mittlerer Radius der 
Wicklung.

von Homo Habilis (Gast)


Bewertung
0 lesenswert
nicht lesenswert
Timmy schrieb:
> Wenn ... 100 Windungen, ... am besten
> 100 Lagen, da dann die Induktivität extrem hoch

Nein. Also (vergiß mal kurz die Formeln):

---------------------------------------------------------------

Du suchst "das theoretische Optimum" (schön gesagt, Helmut)?

In der reinen Theorie ergäbe die höchste Induktivität:

Eine (exakt kreisrunde) Spule mit...

a.) möglichst hoher, am besten unendlich hoher Windungszahl

b.) möglichst niedriger, am besten null Länge

c.) möglichst großem, am besten unendlich großem Radius

[ d.) nur einer Lage - also alle Windungen sozusagen "in der selben 
Ebene", um die eingespannte Fläche maximal zu halten (ergibt sich 
eigentlich aus der Forderung nach mögl. gr. Radius) ]

Diese "ideale Geometrie" ist selbstverständlich...
...in der Realität gar nicht erreichbar.

Und die Formeln sind Näherungen - angelehnt an die Realität, und 
gemacht, um diese mehr oder weniger genau wiederzugeben.

Dabei muß man natürlich auch die für die jeweilige Spulenform (bei Dir 
ja eher "kurz und breit") am_besten_passende Formel verwenden. (Vor 
allem nicht 2 o. mehrere "durcheinanderwerfen".)

--------------------------------------------------------------

Werner H. schrieb:
> In einem alten Arbeitsblatt der Zeitschrift "Elektronik" waren die mal
> alle aufgelistet. Für jede Spulenform (rund, eckig, Schleife, lang,
> kurz, mehrlagig, Drahtabstand usw.) war eine andere Formel nebst deren
> Gültigkeitsgrenzen angegeben.
>
> Wenn das Ergebnis genau werden muß, würde ich nie einen Onlinerechner
> verwenden, sonderen mir die passende Formel in Excel/Calc hineinhacken
> und dann damit arbeiten. Da könnte man sogar mehrere Formeln eingeben
> und die Ergebnisse vergleichen. Und sich die prozentualen Abweichungen
> auch anzeigen lassen.

Öhm... "immer her damit"? ^^

von Homo Habilis (Gast)


Bewertung
0 lesenswert
nicht lesenswert
Schon verstanden, Werner - ist wahrsch. verschollen. Wäre aber schön 
gewesen.

von Wolfgang (Gast)


Bewertung
0 lesenswert
nicht lesenswert
Werner H. schrieb:
> Dafür gab es Diagramm, aus dem man den Korrekturwert ablesen durfte.

Und die Diagramme fallen vom Himmel oder hat die jemand geträumt? ;-)

von Hp M. (nachtmix)


Bewertung
0 lesenswert
nicht lesenswert
Timmy schrieb:
> Demzufolge heisst das also: Wenn ich 100 Windungen haben möchte, sollte
> ich am besten 100 Lagen nehmen, da dann die Induktivität extrem hoch
> wird?

Nein.
Peile einen annähernd quadratischen Wicklungsquerschnitt an, dann bist 
du in der Nähe des Optimums.
Also anstatt 100 Windungen in einer Lage oder einer Scheibenwicklung mit 
1 Windung pro Lage, besser 10 Lagen zu je 10 Windungen nehmen. Die Dicke 
eventueller Lagenisolationen ist zu berücksichtigen.
Im Prinzip geht es darum den Weg der Magnetfeldlinien um den 
Wicklungsquerschnitt herum möglichst kurz zu machen.

: Bearbeitet durch User
von Helmut S. (helmuts)


Bewertung
0 lesenswert
nicht lesenswert
Hp M. schrieb:
> Timmy schrieb:
>> Demzufolge heisst das also: Wenn ich 100 Windungen haben möchte, sollte
>> ich am besten 100 Lagen nehmen, da dann die Induktivität extrem hoch
>> wird?
>
> Nein.
> Peile einen annähernd quadratischen Wicklungsquerschnitt an, dann bist
> du in der Nähe des Optimums.

Das hat mich an eine Diskussion in sci.electronics vor vielen Jahren 
erinnert. Schau hier mal nach Brooks coil.
http://info.ee.surrey.ac.uk/Workshop/advice/coils/air_coils.html

Oder noch besser google mal mit den Worten
brooks coil

Gruß
Helmut

von Werner H. (werner45)


Bewertung
0 lesenswert
nicht lesenswert
Spart euch die Häme.

Die paar Blätter sind irgendwo in einem von 40 Ordnern in Umzugskartons 
auf dem Dachboden (hatte bisher wieder keinen Bedarf).
Wenn ich blöde angemacht werde, habe ich auch keine Lust danach zu 
suchen.

Die Elektronik hatte doch eine große Auflage, die Arbeitsblätter müßte 
doch auch noch jemand anderes haben, nicht nur ich.

Als weitere Quelle fällt mir das "Handbuch für Hochfrequenz- und 
Elektrotechniker" des Verlags für Radio-, Foto-, Kinotechnik (auch 
Herausgeber der "Funktechnik") von 1970 ein. 8 Bände im 
Postkartenformat.
Warscheinlich ist in den "Telefunken Laborbüchern" auch was zu finden.

Ich bin seit Jahren mit einer Altbausanierung beschäftigt und betreibe 
die Elektronik nur noch als Hobby, studiert habe ich eigentlich Chemie. 
Das Haus und das große Grundstück fordern viel Aufmerksamkeit. Zur Zeit 
ist Bäumestutzen angesagt.

Ein "studierter" Elektroniker müßte doch auch mit Unterlagen aushelfen 
können.

Obwohl...es würde mich doch interessieren, wo das Zeug ist.

Gruß   -   Werner

von Homo Habilis (Gast)


Bewertung
0 lesenswert
nicht lesenswert
Wollte nur mein Interesse daran kundtun. (Vermutlich bin ich damit auch 
nicht allein.) Und natürlich gerne aus einer weniger tief vergrabenen / 
versteckten Quelle.

Ich als Angehöriger der Fraktion "elektr(on)isch grün hinter d..." habe 
zu betagteren Dokumenten zumeist keinerlei Zugang. Und oft genug geht es 
um Wissen, um das "es schade wäre"...

MfG

von Werner H. (werner45)


Bewertung
0 lesenswert
nicht lesenswert
Danke der Anteilnahme!

Aber wie sieht das eigentlich rechtlich aus? Den Franzis-Verlag gibt es 
noch.
Eine Kopie zu veröffentlichen, bringt warscheinlioch Ärger mit sich.

Wenn ich ein Foto davon mache, ist das Foto zwar meins, aber das Objekt 
nicht.

Gibt es einen Ausweg aus dem Dilemma?

Gruß   -   Werner

von Hp M. (nachtmix)


Bewertung
0 lesenswert
nicht lesenswert
Werner H. schrieb:
> Gibt es einen Ausweg aus dem Dilemma?

Kaum.
Meine Kenntnisse lauten etwa so:
Außer den Verwertungsrechten des Verlages gibt es das persönliche und 
nicht übertragbare Urheberrecht des Autors, das erst 70 Jahre nach 
dessen Tod erlischt. (Bei seinem Tod geht es auf die Erben über)

Das deutsche Recht lässt es aber zu, dass du privat angefertigte Kopien 
einem sehr begrenzen Kreis von Personen (max. 10) zur Verfügung stellst.

Ein Forum eignet sich dafür natürlich nicht, aber vielleicht eine e-Mail 
an den Interessenten.

: Bearbeitet durch User
von Hp M. (nachtmix)


Angehängte Dateien:

Bewertung
0 lesenswert
nicht lesenswert
Werner H. schrieb:
> Als weitere Quelle fällt mir das "Handbuch für Hochfrequenz- und
> Elektrotechniker" des Verlags für Radio-, Foto-, Kinotechnik (auch
> Herausgeber der "Funktechnik") von 1970 ein. 8 Bände im
> Postkartenformat.
> Warscheinlich ist in den "Telefunken Laborbüchern" auch was zu finden.

Wird wohl.

Werner H. schrieb:
> Obwohl...es würde mich doch interessieren, wo das Zeug ist.

Hier natürlich.

von Timmy (Gast)


Bewertung
-1 lesenswert
nicht lesenswert
Schön, dass das Thema langsam ein wissenschaftliches (bzw. ernstes) 
Niveau erreicht. Man kann leider viel zu oft beobachten, dass Menschen 
ihre eigene Unwissenheit hinter Agressionen verbergen, damit man aufhört 
nachzubohren. Denn man könnte ja rausfinden, dass man nichts findet. 
Solche Menschen haben meisten auch Probleme Wissenslücken zuzugeben und 
empfinden diese als Makel, was sich langfristig als evolutionären 
Nachteil erweisen wird.

@Homo Habilis: Die Induktivität hängt ja von den dynamischen 
"Magnetfeldregelungseigenschaften" der Spule ab. d.h. mehr Windungen = 
stärkere Regelung und mehr Fläche = grösseres Magnetfeld. Analog zu 
P=U*I ist also Pm=Um*Im, demnach ist es nur logisch, die beiden Faktoren 
Windungen und Fläche maximieren zu wollen.

Was ich jedoch nicht verstehe ist dein Punkt b mit der Länge. Warum 
soll das Ziel sein, die Länge zu minimieren? Mit Länge meinst du aber 
glaube ich eher den Widerstand. Das jedoch ist ja nur ein Thema bei 
Schwingkreisen und Spulengüten. Eine unbelastete Spule könnte genausogut 
einen beliebig hohen Widerstand haben?

Und dann noch zu Punkt d. Das würde heissen, dass eine flache Lage aus 
100 Windungen besser ist als eine gestapelte Lage aus 10*10 Windungen? 
Bist du sicher? Die Aussage von Hp M. widerspricht dem und auch mein 
Gefühl sagt mir, dass er da recht hat. Vielleicht habe ich dich auch nur 
falsch verstanden. Es wäre auch eine gute Analogie zur Hochstromspule, 
die nur eine Windung mit extrem grossem Querschnitt hat. Teilt man diese 
eine Windung in 1000 Windungen auf, ohne das Volumen zu ändern (was 
unmöglich ist, da die Isolation Raum braucht), hat man I/1000 und 
U*1000, also die gleiche "elektromagnetische Leistung".

von voltwide (Gast)


Bewertung
0 lesenswert
nicht lesenswert
Timmy schrieb:
> Schön, dass das Thema langsam ein wissenschaftliches (bzw. ernstes)
> Niveau erreicht. Man kann leider viel zu oft beobachten, dass Menschen
> ihre eigene Unwissenheit hinter Agressionen verbergen, damit man aufhört
> nachzubohren. Denn man könnte ja rausfinden, dass man nichts findet.
> Solche Menschen haben meisten auch Probleme Wissenslücken zuzugeben und
> empfinden diese als Makel, was sich langfristig als evolutionären
> Nachteil erweisen wird.

Solchen Schmonzens kannst Du Dir schenken. Deine Belehrungen braucht 
hier niemand.

von Werner H. (werner45)


Bewertung
0 lesenswert
nicht lesenswert
Die Drahtlänge spielt unabhängig vom Widerstand schon eine Rolle, bei 
gegebenem Radius, Spulenlänge und Windungszahl liegt sie fest.

Ich zitiere mal aus dem Handbuch für Hochfrequenztechnik (Band I):
----------------------
Scheibenspule (Draht übereinander gewickelt): (Alle Maße in cm)
L = ra x w² x K x 10^-9[H]
ra Außenradius
w  Windungszahl
K (Korrektur) = f(ri/ra) zwischen 7 und 46, lösbar über elliptische 
Integrale

Mehrlagige Flachspule (Näherung):
L = 4 x n² x w² x (r/(b+c+ra)) x 10^-9 [H]
n  { unbekannt, evtl. Druckfehler }
w  Windungszahl
r  mittlerer Radius
b  Wicklungsbreite
c  Wicklungshöhe
ra  äußerer Radius

Spule maximaler Induktivität (größtmögliche Selbstinduktion mit 
geringster Drahtlänge). Diese Spulen müssen einen quadratischen 
Wickelraum haben, dessen Seitenlänge b ist. Es muß sein:
r = 11/6 x b

L = 3 x w x DL x 10^-9 [H]

r  mittlerer Radius
DL  die gesamte Drahtlänge
---------------------

mehr steht dazu nicht gedruckt.

Gruß   -   Werner

: Bearbeitet durch User
von Hp M. (nachtmix)


Bewertung
0 lesenswert
nicht lesenswert
Timmy schrieb:
> Die Induktivität hängt ja von den dynamischen
> "Magnetfeldregelungseigenschaften" der Spule ab. d.h. mehr Windungen =
> stärkere Regelung und mehr Fläche = grösseres Magnetfeld. Analog zu
> P=U*I ist also Pm=Um*Im, demnach ist es nur logisch, die beiden Faktoren
> Windungen und Fläche maximieren zu wollen

Das klingt nach KurtB.

von Abdul K. (ehydra) Benutzerseite


Bewertung
0 lesenswert
nicht lesenswert
Neben der Induktivität möchte man natürlich auch Stauraum, Widerstand 
und Güte der Spule optimieren. Es gibt mehrere Optima, weil sie nicht 
alle auf einem Punkt der Möglichkeiten liegen!
Auch messen einfache LCR-Meter f, L, ESR und C nicht unabhängig 
voneinander, so daß es bei geometrischer Änderung der Spule zu 
scheinbaren Widersprüchlichkeiten kommen kann. Da muß man dann schon 
eine echte vektorielle Impedanzanalyse machen.

Bei einer 'langen' Spule hat man immer Feldlinien, die schon innerhalb 
der äußeren Bereiche der Spule (Also beiden Enden) die Spule schon 
längst verlassen haben. Mitnichten gehen alle Feldlinien durch die 
gesamte Länge der Spule. Selbst bei einem in der Spule liegenden 
(Ferrit)kern ist es leider nicht so. Daher verliert man bei einer 
länglichen Spule große Anteile der wirksamen Induktivität. Deswegen ist 
eine gedrungene Wicklunganordnung besser.
Mit zunehmener Ausdehnung (sei es x- oder z-Richtung) der Spule wird 
auch die Drahtlänge unverhältnismäßig groß und damit der Widerstand und 
daraus folgend die Güte schlechter. Bekanntlich hat eine Kugel die 
höchste 'Packungsdichte', also Volumen vs. Oberfläche. Eine 
Zylinderspule kommt dem am nächsten und ist leicht wickelbar. Hohe 
Packungsdichte bedeutet kleinster Widerstand, geringste Kosten.
Man kann sich leider nicht alles merken, was man so liest. Daher habe 
ich mir als Faustregel Länge=Durchmesser gemerkt. Das liegt sehr nahe am 
Optimum. Die Wickeltechnik selber hat verhältnismäßig dann höheren 
Einfluß, als man hier genauere Zahlenwerte merken müßte.

In einem ganz anderen Zusammenhang gibt es übrigens einen netten 
praktischen Beweis für das Geschriebene. Vor Jahren wollte ich Autoakkus 
testen und sann nach einem hoch belastbaren Widerstand. Also nahm ich 
einen fetten isolierten Kupferdraht, der aufgerollt da lag. Die Rolle 
geöffnet, sprang er zu einer langen Spule auseinander. Das Gebilde 
steckte ich in einem mit Wasser gefüllten Eimer und dann kam der 
Autoakku dran. Was ich nicht vorhersah war, daß augenblicklich die lange 
Spule zu einem Knäuel zusammensprang, der einer Kugel nicht unähnlich 
war. Die Kräfte waren erstaunlich groß. Vermutlich flossen ein paar 
hundert Ampere durch. Wenn man den Draht vom Batteriepol wegnahm, 
öffnete sich die Spule wieder soweit es der Eimer zuließ. Offensichtlich 
wollten die Feldlinien der Spule den minimalsten Weg erreichen, was zur 
Kugelform führte.

: Bearbeitet durch User
von Hp M. (nachtmix)


Bewertung
0 lesenswert
nicht lesenswert
Werner H. schrieb:
> Mehrlagige Flachspule (Näherung):
> L = 4 x n² x w² x (r/(b+c+ra)) x 10^-9 [H]
> n  { unbekannt, evtl. Druckfehler }
> w  Windungszahl
> r  mittlerer Radius
> b  Wicklungsbreite
> c  Wicklungshöhe
> ra  äußerer Radius

Du hast in der Formel irrtümlich r statt r² geschrieben.
Ansonsten steht sie so auch in meiner Erstauflage von 1949.

Daran mag man sehen, daß
1) man auch in der Vor-Computeraerea schon Copy&Paste beherrschte,
 und daß,
2) in den 21 Jahren bis zur Ausgabe von 1970 sich niemand ernstlich für 
diese Formel interessiert hat.
r.i.p.


Im Übrigen wird in diesem Abschnitt öfter mal n und w gleichbedeutend 
verwendet.
An einer Stelle habe ich n als Anzahl der Lagen gesehen.
So könnte in obiger Formel mit w die Anzahl der Windungen pro Lage 
gemeint sein, und mit n die Anzahl der Lagen.
Dann wäre n² x w² nichts anderes als die Gesamtwindungszahl zum Quadrat 
und die Welt ist wieder in Ordnung.

von Timmy (Gast)


Bewertung
0 lesenswert
nicht lesenswert
Abdul K. schrieb:
> Spule zu einem Knäuel zusammensprang, der einer Kugel nicht unähnlich

Das ist wirklich sehr interessant. Bist du sicher, dass das nicht Zufall 
war? Das würde bedeuten, dass man beim wilden Wickeln in der Mitte ruhig 
etwas mehr auftragen sollte als am Rand. Dass die Natur einen 
Kugelfetisch hat, ist ja allseits bekannt.

von Werner H. (werner45)


Bewertung
0 lesenswert
nicht lesenswert
@ nachtmix: Danke für die Korrektur und Ergänzung.

@ Abdul & Timmy:

Da gibt es einen alten Physikversuch, wo eine Drahtspirale mit einem 
Gewicht unten in Quecksilber taucht und bei Stromfluß anfängt zu onan..
sich auf und ab zu bewegen.

Gruß   -   Werner

von Abdul K. (ehydra) Benutzerseite


Bewertung
0 lesenswert
nicht lesenswert
Bestimmt ein Buch der DDR oder Vorkriegszeiten.

Timmy, ich denke ja. Wildes Wickeln ist gar nicht so schlecht, da die 
Streukapazität viel kleiner ist als bei einer linearen Spule. Es gibt 
auch noch deutlich kompliziertere Wickeltechniken, aber recht 
umständlich und normalerweise unnötig.

Für hohes Q: Wenn linear, dann sollte der Windungsabstand etwa der 
halben Drahtstärke entsprechen. Ein Abstand von gleicher Dicke ist auch 
noch ok und läßt sich sehr einfach wickeln durch doppelten Draht und 
danach einen wieder abwickeln.
Na gut, man könnte ewig drüber reden.

von Werner H. (werner45)


Bewertung
0 lesenswert
nicht lesenswert
Bergmann-Schäfer 1966

Gruß   -   Werner

von Homo Habilis (Gast)


Bewertung
0 lesenswert
nicht lesenswert
OT on:

Timmy schrieb:
> Schön, dass das Thema ... sich langfristig als
> evolutionärer Nachteil erweisen wird.

Denkbar. (Ups - Tipp-Ex umgefallen.) ^^

OT end.

Also, zuallererst:

Abdul und Du habt doch aber aneinander vorbei geredet.

Abdul sprach von vielem, aber (bis auf eine kleine, diese Thematik 
"touchierende" Ausnahme) nicht davon, wie, bzw. mit welcher Spulenform 
und/oder Wickeltechnik, man vor allem (!) möglichst hohe Induktivität 
erreichen würde.

Darum aber ging es Dir doch bei Threaderöffnung, Timmy.

[Nicht, daß von mir aus dieser Thread nicht "einschlafen" dürfte - nur 
was von Dir zuletzt (auf das Hauptthema "wie macht man L mögl. groß" 
bezogen) kam, überzeugt mich noch nicht von Fortschritten. Ich bin 
gespannt.]

Nun zu Deiner Antwort:

Timmy schrieb:
> Was ich jedoch nicht verstehe ist dein Punkt b mit der Länge. Warum
> soll das Ziel sein, die Länge zu minimieren?

Hatte ich dargelegt - Erklärung folgt sogleich:

> Mit Länge meinst du aber glaube ich eher den Widerstand.

Nein. (§) Sondern die Länge eines liegenden, bzw. Höhe eines stehenden, 
Zylinders - der Zylinderspule.

(Hier bezog ich mich schon auf die Bezeichnungen der Formel(n), "Länge 
= l" - und die Drahtlänge stand doch zu dem Zeitpunkt auch gar nicht zur 
Diskussion, bzw. war bis dahin nicht erwähnt worden?

Nochmal: Je kleiner l, also je kürzer die liegende, bzw. je niedriger 
die stehende Zylinderspule, desto höher L - die anderen Parameter 
konstant oder außer Acht gelassen.)

> Das jedoch ist ja nur ein Thema bei Schwingkreisen
> und Spulengüten. Eine unbelastete Spule könnte
> genausogut einen beliebig hohen Widerstand haben?

Ich hatte zwar nicht darüber geschrieben, aber: Nein. Es gibt
m. W. keine Anwendung, in der eine Spule völlig unbelastet ist.

> Und dann noch zu Punkt d. Das würde heissen, dass eine flache Lage aus
> 100 Windungen besser ist als eine gestapelte Lage aus 10*10 Windungen?

Nein. Unter Voraussetzung von b.) und c.) (mögl. kurzer + breiter
Zylinder) ergibt sich genaugenommen eh - "die Aussage von Hp M".

Also "widerspricht dem" keineswegs. Ich hätte meinen Beitrag
evtl. besser noch exakt damit ergänzen sollen - also daß ein
quadrat. Wicklungsquerschnitt am besten wäre - das hätte...

>habe ich dich falsch verstanden.

...hier vielleicht (...) vermieden.

-------------------------------------------------------------

Nochmal wiederholt, zum besseren Verständnis:
Für höchstmögliche Induktivität ist...

### zum Einen korrekt, was ich schrieb:

"In der reinen Theorie ergäbe die höchste Induktivität:
Eine (exakt kreisrunde) Spule mit...

a.) möglichst hoher, am besten unendlich hoher Windungszahl
b.) möglichst niedriger, am besten null Länge (d. Zylinders!)
c.) möglichst großem, am besten unendlich großem Radius
[ d.) nur einer Lage - also alle Windungen sozusagen "in der selben
Ebene", um die eingespannte Fläche maximal zu halten (ergibt sich
eigentlich aus der Forderung nach mögl. gr. Radius)]"

### und zum Anderen die Aussage von Hp. M.:

Hp M. schrieb:
> Peile einen annähernd quadratischen Wicklungsquerschnitt an,
> dann bist du in der Nähe des Optimums.

> Also anstatt 100 Windungen in einer Lage, oder
> einer Scheibenwicklung mit 1 Windung pro Lage,
> besser 10 Lagen zu je 10 Windungen nehmen.

> Die Dicke evtl-er. Lagenisolationen ... berücksichtigen.
> Im Prinzip geht es darum den Weg der Magnetfeldlinien um den
> Wicklungsquerschnitt herum möglichst kurz zu machen.

-------------------------------------------------------------

Also jetzt, nach erneuter Lektüre (diesmal wissend, was ich mit Länge 
meinte), bitte darauf antworten, Timmy. Sonst ist/war der Thread doch 
zumindest für Dich selbst sinnlos?

Antwort schreiben

Die Angabe einer E-Mail-Adresse ist freiwillig. Wenn Sie automatisch per E-Mail über Antworten auf Ihren Beitrag informiert werden möchten, melden Sie sich bitte an.

Wichtige Regeln - erst lesen, dann posten!

  • Groß- und Kleinschreibung verwenden
  • Längeren Sourcecode nicht im Text einfügen, sondern als Dateianhang

Formatierung (mehr Informationen...)

  • [c]C-Code[/c]
  • [code]Code in anderen Sprachen, ASCII-Zeichnungen[/code]
  • [math]Formel in LaTeX-Syntax[/math]
  • [[Titel]] - Link zu Artikel
  • Verweis auf anderen Beitrag einfügen: Rechtsklick auf Beitragstitel,
    "Adresse kopieren", und in den Text einfügen




Bild automatisch verkleinern, falls nötig
Bitte das JPG-Format nur für Fotos und Scans verwenden!
Zeichnungen und Screenshots im PNG- oder
GIF-Format hochladen. Siehe Bildformate.
Hinweis: der ursprüngliche Beitrag ist mehr als 6 Monate alt.
Bitte hier nur auf die ursprüngliche Frage antworten,
für neue Fragen einen neuen Beitrag erstellen.

Mit dem Abschicken bestätigst du, die Nutzungsbedingungen anzuerkennen.