Forum: Ausbildung, Studium & Beruf Drehstromnetz und komplexe Zahlen


Announcement: there is an English version of this forum on EmbDev.net. Posts you create there will be displayed on Mikrocontroller.net and EmbDev.net.
von Imaginär (Gast)


Bewertung
0 lesenswert
nicht lesenswert
Hallo zusammen.
In der Schule arbeiten wir gerade mit komplexen Zahlen an 
Impedanznetzwerken.
Wir behandeln Reihen- und Parallelschaltung von komplexen Widerständen. 
Dabei hab ich gemerkt, dass das ziemlich viel vereinfacht. Die bisher 
verwendeten Winkelberechnungen fallen weg.

Da ich jetzt die Schreibweise kenne, bin ich auf die Idee gekommen, dass 
man das Drehstromnetz auch so beschreiben kann. Ich hab im Internet 
schon gesucht, aber irgendwie fehlen mir die richtigen Schlagworte.

Darf ich die Netzspannung an L1 so beschreiben: U1 = 230V*e^0°
Und die L2: U2 = 230V*e^120°
Und L3: U3 = 230V*e^240°

Also immer mit Betrag und Winkel?

Jetzt zu meiner Frage. Wenn ich die drei Phasen so beschreiben darf, wie 
berechne ich die Spannung zwischen L1 und L2 mit Hilfe der komplexen 
Zahlen? Also die Außenleiterspannung.
Geht das überhaupt?
Wenn ich diese als Vektoren betrachte, dann würde es ja der 
Verktordifferenz entsprechen, stimmt das?
Seither haben wir immer gelernt, dass der Faktor von Strang- zur 
Außenleiterspannung Wurzen 3 ist. Aber wie kann ich das berechnen?

Danke für eure Hilfe.
Und haut mich nicht, ich fange erst gerade damit an.

von Wühlhase (Gast)


Bewertung
0 lesenswert
nicht lesenswert
Imaginär schrieb:
> Darf ich die Netzspannung an L1 so beschreiben: U1 = 230V*e^0°
> Und die L2: U2 = 230V*e^120°
> Und L3: U3 = 230V*e^240°
>
> Also immer mit Betrag und Winkel?
Ja...darfst du.

Imaginär schrieb:
> Jetzt zu meiner Frage. Wenn ich die drei Phasen so beschreiben darf, wie
> berechne ich die Spannung zwischen L1 und L2 mit Hilfe der komplexen
> Zahlen? Also die Außenleiterspannung.
> Geht das überhaupt?
Na sicher geht das. Entweder genauso wie oben, nur eben mit 
400V*e^0°/120°/240° oder, was üblicher ist: sqr(3)*230V*e^...

Imaginär schrieb:
> Wenn ich diese als Vektoren betrachte, dann würde es ja der
> Verktordifferenz entsprechen, stimmt das?
Achtung! Vektorrechnung ist KEINE komplexe Rechnung. Auch wenn einige 
Rechenmethoden die gleichen sind. Aber ja...

Imaginär schrieb:
> Seither haben wir immer gelernt, dass der Faktor von Strang- zur
> Außenleiterspannung Wurzen 3 ist. Aber wie kann ich das berechnen?
Gugel mal nach "Herleitung Verkettungsfaktor"

Bilde N-L1, N-L2 und L1-L2 ein Dreieck und zerlege dieses Dreieck 
nochmal in zwei rechtwinklige Dreiecke. Die Zerlegung erfolgt so, daß 
L1-L2 halbiert wird.

Wenn du jetzt den Kosinussatz auf eines dieser Dreiecke anwendest 
(Strangspannung und 120°/2=60°), erhälst du aus der Kosinusfunktion 
Wurzel(3)/2.

Da du diese aber zweimal hast, du hast ja zwei Dreiecke, ist der 
Verkettungsfaktor exakt Wurzel(3).

Imaginär schrieb:
> Und haut mich nicht, ich fange erst gerade damit an.
Du bist weiter als mancher E-Technikstudent. Ich finds gut.

von Imaginär (Gast)


Bewertung
0 lesenswert
nicht lesenswert
Sorry Fehler:
So natürlich.

L1: U1 = 230V*e^j0°
L2: U2 = 230V*e^j120°
L3: U3 = 230V*e^j240°

von Drehstrom (Gast)


Bewertung
0 lesenswert
nicht lesenswert
Hallo Imaginär,

wenn die kreisdarstellungen für die Imaginären zahlren wählst dann ist 
[math] \phi [\math] ein Wert im Bogenmaß also zwischen 0 und 2pi.
Desweitern ist die Nennspannung wie folgt definiert: [math]U_eff = 
u/\sqrt(s) e^{i\phi}[\math].
Somit wären deine drei Phasen
[math] L_1 = 230/\sqrt(2)*e^{i*0} [\math]
[math] L_2 = 230/\sqrt(2)*e^{i*2/3*\pi} [\math]
[math] L_3 = 230/\sqrt(2)*e^{i*4/3~\pi} [\math]
wenn du diese nun einfach L_1 und L_2 Addierst und den Realteil deiner 
Lösung anschaust bekommst du die spannung zwischen diesen beiden Phasen
viele Grüße

von Drehstrom (Gast)


Bewertung
0 lesenswert
nicht lesenswert
Irgendwie bekomm ich den latex compiler nicht dazu meine krams zu 
kompilieren

von Achim H. (anymouse)


Bewertung
0 lesenswert
nicht lesenswert
Versuch mal etwas wie:

L1 = U0 * e^( j * 0/3 * 2Pi)
L2 = U0 * e^( j * 1/3 * 2Pi)
L3 = U0 * e^( j * 2/3 * 2Pi)


cos(a) + j * sin(a)  = exp (j * a)

: Bearbeitet durch User
von Cyborg (Gast)


Bewertung
-1 lesenswert
nicht lesenswert
Imaginär schrieb:
> In der Schule arbeiten...

Warum fragst du nicht deinen Lehrer? Weiß der darauf keine Antwort?

Imaginär schrieb:
> Seither haben wir immer gelernt, dass der Faktor von Strang- zur
> Außenleiterspannung Wurzen 3 ist. Aber wie kann ich das berechnen?

SQR 3 oder Wurzel 3 = 1,73205... kann jeder Taschenrechner oder was
meinst du? Das andere was du da mit e^.. geschrieben hast, kann ich
nicht nachvollziehen und wozu das gut sein soll. Wenn es um die
Stern-Dreieck-Transformations-Gleichung geht, so kann man die herleiten
oder aus dem Tabellenbuch nehmen. Da muss man nix berechnen.

von Imaginär (Gast)


Bewertung
0 lesenswert
nicht lesenswert
Drehstrom schrieb:
> [math]U_eff =
> u/\sqrt(s) e^{i\phi}[\math].

Das versteh ich noch nicht ganz. Sollte das eigentlich irgendwie 
formatiert sein.

von Imaginär (Gast)


Bewertung
0 lesenswert
nicht lesenswert
Cyborg schrieb:
> SQR 3 oder Wurzel 3 = 1,73205... kann jeder Taschenrechner oder was
> meinst du? Das andere was du da mit e^.. geschrieben hast, kann ich
> nicht nachvollziehen und wozu das gut sein soll. Wenn es um die
> Stern-Dreieck-Transformations-Gleichung geht, so kann man die herleiten
> oder aus dem Tabellenbuch nehmen. Da muss man nix berechnen.

Dann vergesse einfach mal das Drehstromnetz. Ich hab zwei Spannungen, 
die gegeneinander Phasenverschoben sind. Womöglich nicht mal um 120°. 
Wie berechne ich die Außenleiterspannung mit Hilfe der komplexen Zahlen?

von Robert K. (mr_insanity)


Bewertung
0 lesenswert
nicht lesenswert
Drehstrom schrieb:
> Irgendwie bekomm ich den latex compiler nicht dazu meine krams zu
> kompilieren

"[/math]" statt "[\math]"


Hallo Imaginär,

wenn die kreisdarstellungen für die Imaginären zahlren wählst dann ist
 ein Wert im Bogenmaß also zwischen 0 und 2pi.
Desweitern ist die Nennspannung wie folgt definiert:
.
Somit wären deine drei Phasen
wenn du diese nun einfach L_1 und L_2 Addierst und den Realteil deiner
Lösung anschaust bekommst du die spannung zwischen diesen beiden Phasen
viele Grüße

von Drehstrom (Gast)


Bewertung
0 lesenswert
nicht lesenswert
Danke dir fürs formatiern.
Mir ist da doch direkt ein fehler unterlaufen
.
Somit wären deine drei Phasen

  

von Imaginär (Gast)


Bewertung
0 lesenswert
nicht lesenswert
Aha. Und ich hab schon gerätselt was das (s) soll.
Das mit der Definition von Ueff ist mir aber immer noch nicht ganz klar.
Kann da noch jemand genauer drauf eingehen.

von Imaginär (Gast)


Bewertung
0 lesenswert
nicht lesenswert
Ach ja. Unser Lehrer hat behauptet, dass komplexe Zahlen in der 
Polarkoordinate-Schreibweise nicht addiert oder subtrahiert werden 
können.
Hab ich das etwas falsch verstanden?

von Der Andere (Gast)


Bewertung
0 lesenswert
nicht lesenswert
Imaginär schrieb:
> Ach ja. Unser Lehrer hat behauptet, dass komplexe Zahlen in der
> Polarkoordinate-Schreibweise nicht addiert oder subtrahiert werden
> können.

Siehe:
https://de.wikipedia.org/wiki/Komplexe_Zahl
Kapitel "Arithmetische Operationen in der Polarform"
Addition und Subtraktion geht halt deutlich einfacher in der 
algebraischen Form.

von Jack (Gast)


Bewertung
0 lesenswert
nicht lesenswert
Imaginär schrieb:
> Ach ja. Unser Lehrer hat behauptet, dass komplexe Zahlen in der
> Polarkoordinate-Schreibweise nicht addiert oder subtrahiert werden
> können.
> Hab ich das etwas falsch verstanden?

Das ist eine für Schulen typische Aussage.

Natürlich kann man in einem Rutsch die Zahlen in die Normalform wandeln, 
addieren und das Ergebnis zurück in die Polarform wandeln. Da das eine 
Bandwurmformel ergibt, macht man das beim Rechnen von Hand nicht, 
sondern schreibt die einzelnen Schritten separat hin.

Die Formel sieht so aus 
https://de.wikipedia.org/wiki/Komplexe_Zahl#Trigonometrische_Form (die 
dritte Formel zeigt die Addition).

von Posel (Gast)


Bewertung
0 lesenswert
nicht lesenswert

Antwort schreiben

Die Angabe einer E-Mail-Adresse ist freiwillig. Wenn Sie automatisch per E-Mail über Antworten auf Ihren Beitrag informiert werden möchten, melden Sie sich bitte an.

Wichtige Regeln - erst lesen, dann posten!

  • Groß- und Kleinschreibung verwenden
  • Längeren Sourcecode nicht im Text einfügen, sondern als Dateianhang

Formatierung (mehr Informationen...)

  • [c]C-Code[/c]
  • [code]Code in anderen Sprachen, ASCII-Zeichnungen[/code]
  • [math]Formel in LaTeX-Syntax[/math]
  • [[Titel]] - Link zu Artikel
  • Verweis auf anderen Beitrag einfügen: Rechtsklick auf Beitragstitel,
    "Adresse kopieren", und in den Text einfügen




Bild automatisch verkleinern, falls nötig
Bitte das JPG-Format nur für Fotos und Scans verwenden!
Zeichnungen und Screenshots im PNG- oder
GIF-Format hochladen. Siehe Bildformate.
Hinweis: der ursprüngliche Beitrag ist mehr als 6 Monate alt.
Bitte hier nur auf die ursprüngliche Frage antworten,
für neue Fragen einen neuen Beitrag erstellen.

Mit dem Abschicken bestätigst du, die Nutzungsbedingungen anzuerkennen.