Forum: Analoge Elektronik und Schaltungstechnik Genauigkeit eines Wertes bestimmen


Announcement: there is an English version of this forum on EmbDev.net. Posts you create there will be displayed on Mikrocontroller.net and EmbDev.net.
von Matheversager (Gast)


Lesenswert?

Hallo,

ich möchte eine Genauigkeit eines Messwertes abschätzen können.

Es geht um einen Geigerzähler.

Zur Verfügung steht eine Messzeit und eine Zahl Counts. Die Counts 
dürften ideal zufällig sein, die Zeit kann als praktisch fehlerfrei 
annehmen, weil durch einen Quarz vorgegeben.

Nehmen wir an, ich habe 361 Ereignisse in 20 Minuten.

Die Frage ist:
Kann man für den Wert aus diesen Daten eine Unsicherheit abschätzen?
Ich will das in etwa so auf dem Display anzeigen
0,3CPS +- 0,05CPS

Also nichts hochgenaues, ich will aber einen Anhaltspunkt anzeigen, wie 
ich die Messzeit wählen muss, um halbwes aussagekräftige 
Vergleichsmessungen zu machen.

Mit dem Konfidenzintervall klappt das ja nicht, dazu würde ich Zeitwerte 
für jeden einzelnen Tick benötigen - die habe ich nicht.

von Theor (Gast)


Lesenswert?

Nicht in dem Sinne und unter den Voraussetzungen.

Das liegt an Folgendem:
1. Wenn für das Maß der Unsicherheit der beteiligten Grössen an sich 
kein Wert gegeben ist, kann man natürlich auch für daraus abgeleitete 
Grössen keine Unsicherheit angeben.
2. Beispielsweise ist die Unsicherheit der Zeit nicht angegeben. Die 
setzt Du sogar als unwesentlich voraus. Im Umkehrschluss muss sie dann 
als absolut genau angenommen werden. D.h. aber nicht, dass real keine 
Unsicherheit vorliegt.
3. Andere Unsicherheiten entstehen hier potentiell dadurch, dass etwa 
nur ein Teil der aus einer bestimmten Richtung einfallenden Strahlung 
gemessen wird, so dass für die anderen Teile oder Richtungen das Maß der 
einfallenden Strahlung unbekannt ist.
4. Es ist aber auch, nach Deinen Angaben unbekannt, ob überhaupt nur ein 
Teilbereich gemessen werden soll, und falls ja, auf welchen Restbereich 
die Unsicherheit dann bezogen wird. Ebenso käme es darauf an, ob die 
Versuchsanordnung überhaupt ermöglicht, dass aus anderen Richtungen 
Strahlung kommt.

von Der Andere (Gast)


Lesenswert?

Matheversager schrieb:
> Kann man für den Wert aus diesen Daten eine Unsicherheit abschätzen?
> Ich will das in etwa so auf dem Display anzeigen
> 0,3CPS +- 0,05CPS

Was soll diese Aussage bringen?
Du weisst nicht wie sehr deine Strahlungsquelle abgeschirmt wird, weil 
du nicht weisst welche Strahlungsart es ist und welche Energie die 
Strahlung hat.
Du weisst nicht welchen Teil der Counts von der Hintergrundstrahlung 
kommt.
...

Zeig also den Wert an, alles andere sind Informationen, die dem Benutzer 
eine Zuverlassigkeit vorgaukeln, die gar nicht erfüllbar ist.

von Olaf (Gast)


Lesenswert?

Matheversager schrieb:
> Kann man für den Wert aus diesen Daten eine Unsicherheit abschätzen?

Teile die Messzeit durch die Anzahl der Ereignisse, dann können nur noch 
maximal zwei Ereignisse dazu kommen (ein Anfangs- und ein Endereignis) 
und das muss jetzt nur noch in eine prozentuale Ungenauigkeitsangabe 
umgerechnet werden.

361 = 100%
  2 = 0,55

von Theor (Gast)


Lesenswert?

Olaf hat vielleich recht. Ich kann das im Moment nicht sagen. - Mir 
kommt es so vor, als wenn ja die Ereignisse selbst abzählbare Dinge 
sind, aus denen sich keine Unsicherheit ableiten lässt. Aber ich mag 
mich irren.

von Benedikt S. (benedikt_s)


Lesenswert?

Hast du Daten zur Totzeit der Röhre für wenige couts/s ist der Einfluss 
zwar gering aber schon existent, für Hohe Countzaheln wird die Totzeit 
Fehler bestimmend!

hast du überprüft ob die Ereignisse wirklich Gleich verteilt sind?

: Bearbeitet durch User
von Pandur S. (jetztnicht)


Lesenswert?

Unter der Voraussetzung, dass du sicher jeden count misst, weil das 
Signal to noise so hoch ist..

Dann kommt die Unsicherheit aus der Torzeit. Du misst zB 1 count pro 
Zeiteinheit, fuer diese, eine Zeiteinheit. Nun koennte also 0.001 
Zeiteinheiten Vor- und Nachher auch noch einen Count gekommen sein. 
Daher wuerde ich die Unsicherheit als +2 Counts pro Messintervall 
ansetzen.

von Matheversager (Gast)


Lesenswert?

Benedikt S. schrieb:
> Hast du Daten zur Totzeit der Röhre für wenige couts/s ist der
> Einfluss
> zwar gering aber schon existent, für Hohe Countzaheln wird er Fehler
> bestimmend!
>
> hast du überprüft ob die Ereignisse wirklich Gleich verteilt sind?

Ja, Daten zur Totzeit gibt es. Das Zählrohr ist ein SBM-20. Die ist 
angeblich 190µs. Bei Zählraten von 1 CPS ist das fast irrelevant, weil 
das Zählrohr für 0,019% der Zeit blind ist. Ich habs mit verrechnet, ist 
aber eher akademisch, denke ich.

Dass ich jeden sonstigen Impuls erwische, denke ich schon. Zumindest 
erwische ich definitiv jeden Impuls, den auch mein Oszilloskop messen 
kann. Die Impulse sind sehr kräftig.

Mir ist klar, dass ein Geigerzähler kein Präzisionsinstrument ist. Schon 
allein kann das Zählrohr keine Alphastrahlung, ist nicht korrekt 
geschirmt, zählt nur Pulse und keine Energie und so weiter. Ich will 
aber auch keine Lebensmittel für Babys freimessen ;-)

Was ich möchte, ist eine Abschätzung haben ob "die 0,3CPS Zuhause sind 
mehr sind als die 0,25CPS am Arbeitsplatz" oder nur Messfehler wegen zu 
wenig Messzeit. Und wie lange die Messzeit sein muss, um das mit einer 
bestimmten Wahrscheinlichkeit sagen zu können.

Wäre es eine Lösung, dazu die Zeit zwischen den Ticks zu messen, und 
daraus ein Konfidenzintervall zu bestimmen?

von Achim S. (Gast)


Lesenswert?

Geht es dir wirklich um den Messfehler (d.h. darum, um wie viel du dich 
im betrachteten Intervall maximal "verzählt" hast). Dann würde ich auch 
zu 2 Counts raten (weil jeweils zu Beginn und zu Ende einmal gerade ein 
Event verpasst werden kann), sofern Zählrohr und Zeitbasis ideal sind.

Oder geht es dir eigentlich um Statistik?

In jedem einzelnen Zählintervall (in jeder einzelnen Stichprobe) wirst 
du ja aufgrund der Zufallsverteilung der Zerfälle etwas andere Zählraten 
bestimmen. Erst über viele Zählintervalle gemittelt (oder über ein 
langes Intervall gezählt) näherst du dich dem "richtigen" Wert an, der 
die Aktivität deiner Probe beschreibt - selbst wenn dein Zählrohr und 
dein Zähler keinerlei Fehler machen.

Für den zweiten Fall wäre die Varianz deiner Stichproben sigma^2 gleich 
dem Zählwert, die Standardabweichung also gleich der Wurzel daraus.

Dementsprechend werden Zählraten mit N detektierten Ereignissen oft 
angegeben mit N/T +/- Wurzel(N)/T.

Je länger du das einzelne Zählintervall machst, desto geringer wird also 
dessen relative Unsicherheit (sinkt mit 1/Wurzel(N)).

von Werner H. (werner45)


Lesenswert?

Die Totzeit kann man vernachlässigen, weil kaum jemand sehr starke 
Präparate zuhause hat. Verdopple den Abstand zum Präparat, wenn Du mehr 
als 1/4 der Counts hast, liegt Totzeit vor. Den Einfluß kann man auch 
mathematisch korrigieren.

Abschätzung der Präzision:
Erhöhe die Anzahl der Messungen, z. B., 5x 20 min, dann kannst Du die 
Counts vergleichen und die Abweichung bestimmen. Dasselbe für die 
Nullrate.

Die Genauigkeit der Meßzeit spielt bei schwachen Präparaten und langen 
Meßzeiten keine Rolle, Netzfrequenz genügt.
(Fehler 10 oder 20 ms bei 1200000 ms = 0,0008 %).

Gruß   -   Werner

P.S.:  Nimm nie einen Geigerzähler in ein Flugzeug mit.

von M.A. S. (mse2)


Lesenswert?

Matheversager schrieb:
> Was ich möchte, ist eine Abschätzung haben ob "die 0,3CPS Zuhause sind
> mehr sind als die 0,25CPS am Arbeitsplatz" oder nur Messfehler wegen zu
> wenig Messzeit.

Ich bin weder Fachmann für Strahlenschutz noch für Statistik, trotzdem 
tue ich meine Meinung kund:

Ich würde denken, dass der größte Einflußparameter die 
Wechselwirkungswahrscheinlichkeit der einzelnen Strahlungsquanten mit 
Deinem Zählrohr sind. Diese hängt ganz massiv von der Stahlenart und 
sicherlich auch erheblich von der Energie der Quanten ab.
Sprich: solltest Du an unterschiedlichen Orten unterschiedliche Arten 
von Strahlenquellen haben, wäre es schwierig mit der Vergleichbarkeit.


Matheversager schrieb:
> Wäre es eine Lösung, dazu die Zeit zwischen den Ticks zu messen, und
> daraus ein Konfidenzintervall zu bestimmen?
Was soll das bringen? Schließlich ist die Folgezeit rein zufällig (aber 
wie gesagt: ich habe keine Ahnung von Statistik).

Meiner Meinung nach ist die einzige sinnvolle Maßnahme zur 
Genauigkeitssteigerung eine Erhöhung der Messzeit.

von Yalu X. (yalu) (Moderator)


Lesenswert?

Matheversager schrieb:
> Ich will das in etwa so auf dem Display anzeigen
> 0,3CPS +- 0,05CPS

Wenn man die Totzeit vernachlässigt, ist die Anzahl n der Impulse
während der Messzeit Poisson-verteilt, d.h. n kann unabhängug vom
Erwartungswert zwischen 0 und nahezu unendlich variieren. Deswegen
können keine Fehlergrenzen angegeben werden, wohl aber die Varianz und
Standardabweichung.

Wenn du während der Messzeit t n Impulse zählst, ist dieses n die
bestmögliche Schätzung für den Erwartungswert, da keine weiteren
Informationen zu dessen Schätzung gegeben sind. Da bei der Poisson-
Verteilung Varianz und Erwartungswert gleich sind, ist die Varianz
ebenfalls n und die Standardabweichung entsprechend √n. Um die
Impulsrate zu erhalten, müssen diese Werte um den Faktor t
herunterskaliert werden. Damit ist deren Erwartungswert n/t und deren
Standardabweichung √n/t (das Wurzelzeichen bezieht sich dabei nur auf
das n, nicht auf den gesamten dahinter stehenden Ausdruck).

In deinem Beispiel sind t = 1200s und n = 361. Die mittlere Impulsrate
ist also 361 / 1200s = 0,301Hz mit einer Standardabweichung von
√361 / 1200s = 0,016Hz.

Aus dieser Rechnung wird noch etwas anderes deutlich: Um doppelt so
genau zu messen (d.h. die Standardabweichung zu halbieren), musst du
viermal so lange messen.

: Bearbeitet durch Moderator
von Theor (Gast)


Lesenswert?

@ Yalu

Das fand ich sehr interessant. Danke.

Fürchte, ich habe mich da mit meinem ersten Beitrag etwas zu weit aus 
dem Fenster gelehnt. Sorry, TO.

von Matheversager (Gast)


Lesenswert?

Yalu X. schrieb:
> Matheversager schrieb:
>> Ich will das in etwa so auf dem Display anzeigen
>> 0,3CPS +- 0,05CPS
>
> Wenn man die Totzeit vernachlässigt, ist die Anzahl n der Impulse
> während der Messzeit Poisson-verteilt, d.h. n kann unabhängug vom
> Erwartungswert zwischen 0 und nahezu unendlich variieren. Deswegen
> können keine Fehlergrenzen angegeben werden, wohl aber die Varianz und
> Standardabweichung.
>
> Wenn du während der Messzeit t n Impulse zählst, ist dieses n die
> bestmögliche Schätzung für den Erwartungswert, da keine weiteren
> Informationen zu dessen Schätzung gegeben sind. Da bei der Poisson-
> Verteilung Varianz und Erwartungswert gleich sind, ist die Varianz
> ebenfalls n und die Standardabweichung entsprechend √n. Um die
> Impulsrate zu erhalten, müssen diese Werte um den Faktor t
> herunterskaliert werden. Damit ist deren Erwartungswert n/t und deren
> Standardabweichung √n/t (das Wurzelzeichen bezieht sich dabei nur auf
> das n, nicht auf den gesamten dahinter stehenden Ausdruck).
>
> In deinem Beispiel sind t = 1200s und n = 361. Die mittlere Impulsrate
> ist also 361 / 1200s = 0,301Hz mit einer Standardabweichung von
> √361 / 1200s = 0,016Hz.
>
> Aus dieser Rechnung wird noch etwas anderes deutlich: Um doppelt so
> genau zu messen (d.h. die Standardabweichung zu halbieren), musst du
> viermal so lange messen.

Danke für die Antwort!

Das ist exakt das, was ich suche :-)

In einer ruhigen Stunde werde ich mir die nötigen Grundlagen zu Gemüte 
führen. Dank Wikipedia ja kein Problem.

Antwort schreiben

Die Angabe einer E-Mail-Adresse ist freiwillig. Wenn Sie automatisch per E-Mail über Antworten auf Ihren Beitrag informiert werden möchten, melden Sie sich bitte an.

Wichtige Regeln - erst lesen, dann posten!

  • Groß- und Kleinschreibung verwenden
  • Längeren Sourcecode nicht im Text einfügen, sondern als Dateianhang

Formatierung (mehr Informationen...)

  • [c]C-Code[/c]
  • [code]Code in anderen Sprachen, ASCII-Zeichnungen[/code]
  • [math]Formel in LaTeX-Syntax[/math]
  • [[Titel]] - Link zu Artikel
  • Verweis auf anderen Beitrag einfügen: Rechtsklick auf Beitragstitel,
    "Adresse kopieren", und in den Text einfügen




Bild automatisch verkleinern, falls nötig
Bitte das JPG-Format nur für Fotos und Scans verwenden!
Zeichnungen und Screenshots im PNG- oder
GIF-Format hochladen. Siehe Bildformate.
Hinweis: der ursprüngliche Beitrag ist mehr als 6 Monate alt.
Bitte hier nur auf die ursprüngliche Frage antworten,
für neue Fragen einen neuen Beitrag erstellen.

Mit dem Abschicken bestätigst du, die Nutzungsbedingungen anzuerkennen.