Forum: Analoge Elektronik und Schaltungstechnik ltSpice: Ladung Kondensator anzeigen


Announcement: there is an English version of this forum on EmbDev.net. Posts you create there will be displayed on Mikrocontroller.net and EmbDev.net.
von Mike B. (mike_b97) Benutzerseite


Bewertung
0 lesenswert
nicht lesenswert
Hi!

Kann ich mir in ltSpice die Ladekurve für einen Kondensator anzeigen 
lassen?
Ich meine explizit die elektrische Ladung Q zum Zeitpunkt t, nicht die 
Spannungskurve.
Die Lade-Kurven für die Spannung und den Strom am Kondensator verlaufen 
reziprok,
Spannung degressiv bis auf xV steigend,
Strom degressiv bis auf 0A fallend.

Q=C*U
und
C=I*t/U

Kann ich mir nun in LtSpice die Ladung Q zum Zeitpunkt t aus den Kurven 
der Spannung und des Stromes von T=0 bis t ermitteln und anzeigen 
lassen?

: Verschoben durch Admin
von Achim S. (Gast)


Bewertung
0 lesenswert
nicht lesenswert
Mike B. schrieb:
> Kann ich mir nun in LtSpice die Ladung Q zum Zeitpunkt t aus den Kurven
> der Spannung und des Stromes von T=0 bis t ermitteln und anzeigen
> lassen?

Lass das Produkt aus Spannung und dem Wert des Kondensators anzeigen, 
und denke dir an der Achse anstelle des "V" ein "C" - dann hast du die 
Ladungsanzeige.

von Helmut S. (helmuts)


Bewertung
1 lesenswert
nicht lesenswert
Statt V(a) kannst du 1u*V(a)/1V plotten. Damit erhälst du eine 
dimensionslose Skalierung der y-Achse mit der Ladung des 1uF 
Kondensators.

: Bearbeitet durch User
von Mike B. (mike_b97) Benutzerseite


Bewertung
-2 lesenswert
nicht lesenswert
Achim S. schrieb:
> Lass das Produkt aus Spannung und dem Wert des Kondensators anzeigen,
> und denke dir an der Achse anstelle des "V" ein "C" - dann hast du die
> Ladungsanzeige.

I*U=P
Ist also die Leistung, aber nicht die Ladung.
Was ich brauche ist das Integral der Leistung über den Zeitabschnitt T=0 
bis t.
Oder?

von Mike B. (mike_b97) Benutzerseite


Angehängte Dateien:

Bewertung
-2 lesenswert
nicht lesenswert
Helmut S. schrieb:
> Statt V(a) kannst du 1u*V(a)/1V plotten. Damit erhälst du eine
> dimensionslose Skalierung der y-Achse mit der Ladung des 1uF
> Kondensators.

ich habe einen 680µF Elko der von t=0 bis t=10ms degressiv steigend von 
0V bis auf 23.19V aufgeladen wird.
Der Plot 680µ*V(vout)/1V zeigt mir zum Zeitpunkt 10.000543ms einen Wert 
von 15.76725m an.
ALLERDINGS gebe ich in dieser Rechnung den Maximalwert von Q ja bereits 
vor.
Ich müsste wie beschrieben doch aber das Integral von (I*t/V)/dt zeigen 
lassen, oder nicht?

von hinz (Gast)


Bewertung
0 lesenswert
nicht lesenswert

von Helmut S. (helmuts)


Angehängte Dateien:

Bewertung
1 lesenswert
nicht lesenswert
Bei einem Kondensator dessen Kapazität nicht von der Spannung abhängt 
gilt für die Ladung

Q(t) = U(t)*C = Integral I(t)dt   0 bis t

Im Anhang ein Beispiel.

Falls die Kapazität des Kondensators von der Spannung abhängt, glit nur 
noch

Q(t) = Integral I(t)dt   0 bis t

Dazu benötigt man einen Integrator in der Simulation da LTspice kein 
Integral im Plotfenster berechnen kann. Siehe Schaltung im Anhang.

von Mike B. (mike_b97) Benutzerseite


Angehängte Dateien:

Bewertung
-1 lesenswert
nicht lesenswert
Helmut S. schrieb:
> Bei einem Kondensator dessen Kapazität nicht von der Spannung
> abhängt

> Falls die Kapazität des Kondensators von der Spannung abhängt, glit nur
> noch

Wann hängt die Ladung nicht von der Spannung ab?
(mein e-Wissen hat wohl Grenzen...)

Der Umweg über die zweite, berechnete Quelle ist clever.

Ich errechne aus den exportierten Daten die Werte wie in der Graphik 
angegeben.
V+I auf der linken, der Rest auf der rechten Achse.
Die graue Linie ist der vorgebene Plot von oben,
die hellblaue ist der Wert für den Zeitabschnitt,
die dunkelblaue Linie das Integral (also die Summe der hellblauen 
Linie).

Allerdings komme ich nicht auf den berechneten Wert von 15.8m, 
wahrscheinlich weil die Zeitabschnitte zu grob sind.

von Helmut S. (helmuts)


Bewertung
0 lesenswert
nicht lesenswert
> > Falls die Kapazität des Kondensators von der Spannung abhängt, glit nur

> Wann hängt die Ladung nicht von der Spannung ab?
(mein e-Wissen hat wohl Grenzen...)

In meinem Text steht nicht Ladung sondern Spannung. Lesen will gelernt 
sein ...

von Achim S. (Gast)


Bewertung
0 lesenswert
nicht lesenswert
Mike B. schrieb:
> I*U=P
> Ist also die Leistung, aber nicht die Ladung.

Ich hab ja nicht gesagt, lass dir Spannung*Strom anzeigen sondern lass 
dir Spannung*Kapazität anzeigen.

U*C=Q

Mike B. schrieb:
> Was ich brauche ist das Integral der Leistung über den Zeitabschnitt T=0
> bis t.

Wenn du dir das Leben schwer machen willst, kannst du das naürlich auch 
so lösen. Ansonsten - wie von mehreren vorgeschlagen - einfach Spannung 
mal Kapazität anschauen.

von hinz (Gast)


Bewertung
0 lesenswert
nicht lesenswert

von Achim S. (Gast)


Bewertung
0 lesenswert
nicht lesenswert
hinz schrieb:
> 
https://de.wikipedia.org/wiki/Keramikkondensator#Spannungsabh.C3.A4ngigkeit_der_Kapazit.C3.A4t

War das als Antwort auf meinen Beitrag gedacht?

Na denn: klar gibt es nichtlineare Dielektrika, das war mir durchaus 
bewusst. Aber da der TO in seiner Berechnung bisher konstante 680µF 
ansetzt scheint es nicht sein primäres Anliegen zu sein, solche 
Materialien zu beschreiben. Und dann ist die Triviallösung für sein 
Problem eben, dass er die Ladung berechnet, indem er die Spannung am 
Kondensator mit der (konstanten) Kapazität multipliziert.

von hinz (Gast)


Bewertung
0 lesenswert
nicht lesenswert
Achim S. schrieb:
> War das als Antwort auf meinen Beitrag gedacht?

Nein.

von Mike B. (mike_b97) Benutzerseite


Bewertung
-1 lesenswert
nicht lesenswert
Helmut S. schrieb:
> Bei einem Kondensator dessen Kapazität nicht von der Spannung
> abhängt

> Falls die Kapazität des Kondensators von der Spannung abhängt, glit nur
> noch

> In meinem Text steht nicht Ladung sondern Spannung. Lesen will gelernt
> sein ...

Wann hängt die C von U ab und wann nicht?

von Mike B. (mike_b97) Benutzerseite


Bewertung
-1 lesenswert
nicht lesenswert
Achim S. schrieb:
> Und dann ist die Triviallösung für sein
> Problem eben, dass er die Ladung berechnet, indem er die Spannung am
> Kondensator mit der (konstanten) Kapazität multipliziert.

Und wie bekomme ich Q(t) angezeigt, für jedes t von 0sek bis 
Ladeschluss?
Die konstante Kapazität hat der Kondensator ja erst dann mit Ladung 
"vollgemacht", wenn innerhalb t genug I bei einer Spannung von U 
geflossen ist.

von Achim S. (Gast)


Bewertung
0 lesenswert
nicht lesenswert
Mike B. schrieb:
> Und wie bekomme ich Q(t) angezeigt, für jedes t von 0sek bis
> Ladeschluss?

zum xten mal: lass einfach die Spannung multipliziert mit der Kapazität 
plotten. Schau dir die Beispiele von Helmut an, er hat dir die Lösung 
für einen 1µF Kondensator doch frei Haus geliefert.

Die Ladung des Kondensators und die Spannung am Kondensator sind - bei 
konstanter Kapazität - bis auf einen Proportionalitätsfaktor identisch. 
Dieser Proportionalitätsfaktor heißt bei dir 680µ. Helmut hat dir in 
seiner Simu gezeigt, dass U*C und das Integral des Stroms über die Zeit 
genau das selbe Ergebnis liefern.

Mike B. schrieb:
> Wann hängt die C von U ab und wann nicht?

C hängt von U ab, wenn du einen Kondensator verwendest, bei dem C von U 
abhängt.

hinz schrieb:
> 
https://de.wikipedia.org/wiki/Keramikkondensator#Spannungsabh.C3.A4ngigkeit_der_Kapazit.C3.A4t

C kann außerdem von der Temperatur abhängen. Wenn du also den 
Kondensator während des Aufladens mit dem Feuerzeug aufheizt, wird die 
Sache komplizierter. Und wenn du während des Aufladens mit einer Zange 
ein Stück aus dem Kondensator ausbrichst, bekommst du wieder einen 
komplizierteren Zusammenhang.

Aber wenn du einen Kondensator mit konstanter Kapazität von 680µF 
betrachtest, dann gilt das triviale U*680µ=Q

von Helmut S. (helmuts)


Bewertung
0 lesenswert
nicht lesenswert
Mike B. schrieb:
> Helmut S. schrieb:
>> Bei einem Kondensator dessen Kapazität nicht von der Spannung
>> abhängt
>
>> Falls die Kapazität des Kondensators von der Spannung abhängt, glit nur
>> noch
>
>> In meinem Text steht nicht Ladung sondern Spannung. Lesen will gelernt
>> sein ...
>
> Wann hängt die C von U ab und wann nicht?

Das hängt vom Bauteil ab.
Die Keramik-Kondensatoren mit extrem hohen Dielektrizitätskonstanten 
sind alle sehr spannungsabhängig. Beispiele sind die X7R-, X5R- und Y5V 
Kondensatoren. Deren Kapazität sinkt drastisch mit der Spannung. Da gibt 
es 25V Cs die bei 15V gerade noch 10% der Nennkapazität haben. Außerdem 
zeigen sie einen starken Piezoeffekt.
Alle Kapazitäten in Halbleitern (PN-Übergang) sind spannungsabhängig.

von Mike B. (mike_b97) Benutzerseite


Angehängte Dateien:

Bewertung
0 lesenswert
nicht lesenswert
Achim S. schrieb:

> Aber wenn du einen Kondensator mit konstanter Kapazität von 680µF
> betrachtest, dann gilt das triviale U*680µ=Q

Also auch Q(t)=680µF*U(t)?

Zwei Sachen haben mich nur verwiirt:
1. Ist der Stromfluss laut meiner Graphik nicht spiegelbildlich zur 
Spannungskurve sondern der Strom ist erst sehr hoch, macht dann einen 
Knick und bildet dann die U-Kurve reziprok nach.
Von daher hätte ich gedacht, die Q(t)=A(t)*t/V(t)*V(t) kann nicht exakt 
die (reziprok) gleiche Form haben wie die U-Kurve. Dies sieht man auch 
in der errechneten dunkelblaue Kurve, die hat einen viel steileren und 
dann viel geringer progressiven Verlauf hat als die errechnete 
dunkelgraue Linie. Aber in den exportierten Werten fehlen anscheinend 
ganz am Anfang einige Daten oder sind zumindest für I nicht schlüssig.

2. Helmut lässt die Spannung voll auf 10V bis der Kondensator voll ist. 
In meiner Schaltung jedoch "pumpe" ich, wie bei einer Ladungspumpe 
üblich (darum gehts in dem Beispiel), den Kondensator auf, in diesem 
Fall mit einem PWM-Verhältnis von 50:50, 3ms ton zu 6ms tperiod. In der 
spannungslosen Zeit hat der C in der Schaltung von Helmut Gelegenheit, 
sich wieder über R1 in die V1 zu entladen, da kein Serienwiderstand 
vorgegeben ist. Daher erreicht der C natürlich nie seine volle Ladung, 
wenn t zu klein ist. w.z.b.w. bzw. q.e.d.
Ein Serienwiderstand der Spannungsquelle verlängert nur die Zeit bis C 
voll ist.
Setze ich in Helmuts Schaltung (bei angepassten C=680µF und V1 auf 
Von=24V) ein Puls-Pausen-Verhältnis von 1ms/0.2ms ton=1ms tperiod=1.2ms 
bekomme ich mehr Ladung in der vorgegebenen Zeit in den C.
Um die Rückentladung zu verhindern packe ich noch eine D vor R1, am 
besten gleich eine Schottky-Diode, so verhindere ich den Rückfluss in 
die Spannungsquelle und kriege den C in wesentlich kürzerer Zeit voll.

Das war jetzt insgesamt sicherlich keine Erkenntnis, die einen 
gestandenen E-Techniker vom Sockel reisst... :-D

Aber vielen Dank für die Hilfe!

: Bearbeitet durch User
von Achim S. (Gast)


Bewertung
0 lesenswert
nicht lesenswert
Mike B. schrieb:
> Also auch Q(t)=680µF*U(t)?

Ja

Mike B. schrieb:
> Von daher hätte ich gedacht, die Q(t)=A(t)*t/V(t)*V(t) kann nicht exakt
> die (reziprok) gleiche Form haben wie die U-Kurve.

Was soll das jetzt für eine Formel sein? Soll dein A(t) für den 
Stromfluss stehen und V(t) für die Spannung? Die üblichen Formelzeichen 
dafür wären I(t) bzw. U(t).

Letztlich schreibst du dann Q(t)=I(t)*t, und das gilt nicht allgemein 
sondern nur im Sonderfall, dass der Strom zeitlich konstant ist (also 
nicht bei der hier betrachteten Ladekurve des Kondensators).

Deine weiteren Kommentare zu verschiedenfarbigen berechneten Kurven kann 
ich leider nicht nachvollziehen. Ich kann nur versprechen: wenn dabei 
etwas anderes herauskommt als Q=C*U, dann ist deine Berechnung falsch.

von Mike B. (mike_b97) Benutzerseite


Bewertung
0 lesenswert
nicht lesenswert
Achim S. schrieb:
> Was soll das jetzt für eine Formel sein? Soll dein A(t) für den
> Stromfluss stehen und V(t) für die Spannung? Die üblichen Formelzeichen
> dafür wären I(t) bzw. U(t).

ouch ja, der Abend is eindeutig zu spät, natürlich hast du recht

> Deine weiteren Kommentare zu verschiedenfarbigen berechneten Kurven kann
> ich leider nicht nachvollziehen. Ich kann nur versprechen: wenn dabei
> etwas anderes herauskommt als Q=C*U, dann ist deine Berechnung falsch.

Betreffen die Graphik in meinem Post von 20:11 Uhr.
Da hab ich die exportierten Wert per Excel ausgewertet in der die Kurve 
für den Stromverlauf eben keine eindeutige Spiegelung der Spannungskurve 
ist und Q sich dann eben auch nicht 1:1 auf die Spannungskurve "packen" 
lässt, wie in der Graphik von Helmut um 19:49Uhr.

von Achim S. (Gast)


Bewertung
0 lesenswert
nicht lesenswert
Mike B. schrieb:
> Da hab ich die exportierten Wert per Excel ausgewertet in der die Kurve
> für den Stromverlauf eben keine eindeutige Spiegelung der Spannungskurve
> ist und Q sich dann eben auch nicht 1:1 auf die Spannungskurve "packen"
> lässt, wie in der Graphik von Helmut um 19:49Uhr.

Dann ist eben deine Excel-Berechung leider falsch.

Wenn ich es richtig sehe, summierst du dort I*dt/V auf. Was soll die 
Division durch V (durch den Momentanwert der Kondensatorspannung?) Die 
hat an der Stelle nichts verloren.

von Mike B. (mike_b97) Benutzerseite


Bewertung
0 lesenswert
nicht lesenswert
Achim S. schrieb:

> Wenn ich es richtig sehe, summierst du dort I*dt/V auf. Was soll die
> Division durch V (durch den Momentanwert der Kondensatorspannung?) Die
> hat an der Stelle nichts verloren.

C=I*t/V
Q=C*U
somit Q = I*t/V*V = I*t

richtig, '*V' vergessen
IST hab ich jetzt 15,41mC (wird Coulomb mit C abgekürzt?)
SOLL waren 15,81mC, passt also recht gut, der C ist halt noch nicht ganz 
voll geworden.

Antwort schreiben

Die Angabe einer E-Mail-Adresse ist freiwillig. Wenn Sie automatisch per E-Mail über Antworten auf Ihren Beitrag informiert werden möchten, melden Sie sich bitte an.

Wichtige Regeln - erst lesen, dann posten!

  • Groß- und Kleinschreibung verwenden
  • Längeren Sourcecode nicht im Text einfügen, sondern als Dateianhang

Formatierung (mehr Informationen...)

  • [c]C-Code[/c]
  • [code]Code in anderen Sprachen, ASCII-Zeichnungen[/code]
  • [math]Formel in LaTeX-Syntax[/math]
  • [[Titel]] - Link zu Artikel
  • Verweis auf anderen Beitrag einfügen: Rechtsklick auf Beitragstitel,
    "Adresse kopieren", und in den Text einfügen




Bild automatisch verkleinern, falls nötig
Bitte das JPG-Format nur für Fotos und Scans verwenden!
Zeichnungen und Screenshots im PNG- oder
GIF-Format hochladen. Siehe Bildformate.
Hinweis: der ursprüngliche Beitrag ist mehr als 6 Monate alt.
Bitte hier nur auf die ursprüngliche Frage antworten,
für neue Fragen einen neuen Beitrag erstellen.

Mit dem Abschicken bestätigst du, die Nutzungsbedingungen anzuerkennen.