mikrocontroller.net

Forum: Analoge Elektronik und Schaltungstechnik Widerstände in einer Sternschaltung bestimmen


Autor: Sven Krauss (satirebird)
Datum:
Angehängte Dateien:

Bewertung
0 lesenswert
nicht lesenswert
Hallo zusammen,

in habe eine Messschaltung die ich auf folgendes Problem reduziert habe. 
Das ist eine Sternschaltung bei der Ua und Ub sowie die Ströme durch die 
Widerstände bekannt sind.

Ist es möglich aus den bekannten Größen die Widerstände R1, R2 und R3 zu 
berechnen? Wenn ja, wie sieht dann die Lösung aus?

Viele Grüße

: Verschoben durch Moderator
Autor: Detlef _a (detlef_a)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
Es gibt die
https://de.wikipedia.org/wiki/Stern-Dreieck-Transformation

Benötigst Du aber garnicht. Geht rein mit Überlagerung, Parallelen Rs 
und olle Ohm:

I2=Ub/(R3+R1||R2)+Ua/(R1+R2||R3)

Cheers
Detlef

Autor: Arno (Gast)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
Ich vermute nicht. Drei Maschen betrachten...

...und du siehst, dass die Gleichungen linear abhängig sind, dir also 
eine Information fehlt. Oder ich bin gerade betriebsblind und übersehe 
eine Randbedingung, das kann auch sein - LGS lösen darfst du selbst ;)

Anschaulich: Wenn ich U_A und U_B als gegeben voraussetze, kann ich dann 
z.B. R_3 vergrößern, wenn ich gleichzeitig R1 im richtigen Maß 
verkleinere und R_2 anpasse, ohne dass sich die Ströme ändern? Ich 
glaube ja.

MfG, Arno

Autor: vn nn (Gast)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
Arno schrieb:
> Ich vermute nicht. Drei Maschen betrachten...
> ...und du siehst, dass die Gleichungen linear abhängig sind, dir also
> eine Information fehlt.

Zwei Gleichungen mit zwei Unbekannten, die dritte Masche ist unnötig. 
Zweite Gleichung nach I2 umstellen, in die erste einsetzen, umstellen 
nach I1, ausrechnen. Wo liegt das Problem?

Autor: Georg M. (g_m)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
Arno schrieb:
> ...und du siehst, dass die Gleichungen linear abhängig sind

Knotengleichung und zwei Maschengleichungen

https://de.wikipedia.org/wiki/Netzwerkanalyse_(Ele...

Autor: Elektrofan (Gast)
Datum:

Bewertung
-1 lesenswert
nicht lesenswert
Fachkräftemangel?

Autor: Helmut S. (helmuts)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
Mit dem Maschenstromverfahren kann man 2 Gleichungen aufstellen. Mehr 
Gleichungen gibt die alleinige Messung der Stöme nicht her.

I1*(R1+R2) -I2*R2 -Ua = 0 (1)

-I1*R2  +I2*(R2+R3) -Ub = 0 (2)

Man kann jetzt jeden Wert für R2 zwischen 0Ohm und unendlich Ohm frei 
wählen um obige Gleichungen zu erfüllen. Deinen Wunsch damit die 3 
Widerstände zu berechnen kann man damit leider nicht erüllen.

Autor: Sven Krauss (satirebird)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
Das stimmt, es lässt sich so nicht eindeutig lösen. Ich hatte noch mit 
dem Gedanken gespielt die Leistung als dritte Information einzubeziehen. 
Das führt aber auch nicht zum Ziel. Diese Gleichung ist eben auch für 
alle möglichen Kombinationen erfüllt.
Den Wertebereich kann man aber einschränken. Das geben die Gleichungen 
dann her. Ich muss mal sehen, ob das eventuell für die Messung auch 
ausreicht.

Vielen Dank.

Autor: Helmut S. (helmuts)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
Nachtrag:
Einschränkungen für die Wahl von R2

I1*(R1+R2) -I2*R2 -Ua = 0 (1)

-I1*R2  +I2*(R2+R3) -Ub = 0 (2)

Aus (1)

R1 = (Ua -(I1-I2)*R2)/I1

Bedingung:  R2 < Ua/(I1-I2)

Aus (2)

R3 = (Ub -(I2-I1)*R2)/I2

Bedingung: R2 < Ub/(I2-I1)

Autor: MikeH (Gast)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
@Arno: Warum sollen die Gleichungen unabhängig sein? hab die gleiche 
einfache Lösung und in Matrixform I(3x3) * R(3x1) = U(3x1) sieht mir das 
ohne weiteres lösbar aus.
Btw. So ein lineares Netzwerk lässt sich mit zwei unabhängigen Maschen- 
und einer Knotengleichung immer lösen.

Autor: MikeH (Gast)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
Ach ja vergessen: Einfach I3 = (I1-I2) ersetzen, dann wird es mMn ganz 
einfach.

Autor: Helmut S. (helmuts)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
> Btw. So ein lineares Netzwerk lässt sich mit zwei unabhängigen Maschen-
und einer Knotengleichung immer lösen.

Nur 2 Gleichungen aber 3 Unbekannte - das ist (s)ein "Problem".

Autor: MikeH (Gast)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
OK, ich komme auf:

mit

Das stimmt mit Arnos Ansatz überein. (Hoffe es ist richtig gesetzt).
Das ganze muss genau eine Lösung besitzen, da es ja offensichtlich ist, 
dass sich endliche Ströme bei endlichen U und R einstellen werden. Sonst 
würde entweder die Mathematik oder die kirchhoffschen Regeln nicht 
vollständig sein.

Wenn man ganz beliebige Werte für U und I wählt, können die Widerstände 
allerdings negativ werden.

Autor: Helmut S. (helmuts)
Datum:
Angehängte Dateien:

Bewertung
1 lesenswert
nicht lesenswert
Hier mal ein Beispiel: I1=1A, I2=1,5A, Ua=10V, Ub=20V
R2 kann frei zwischen 0Ohm und 40Ohm gewählt werden. Je anch Wahl kommt 
für R1 ein Wert von 10Ohm bis 30Ohm und R2=13,333Ohm bis 0Ohm heraus.

Die angehängten Dateien sind für LTspiceXVII.
http://ltspice.linear-tech.com/software/LTspiceXVII.exe

: Bearbeitet durch User
Autor: Helmut S. (helmuts)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
Mike H. schrieb
> OK, ich komme auf:

Deine 3. Gleichung ist nicht unabhängig. Sie ist eine Linearkombination 
der 1. u. 2. Gleichung.
Gleichung3 = Gleichung1 -Gleichung2.

Damit hast du nur noch 2 unabhängige Gleichungen. Die Konsequenzen 
siehst du in meinem vorherigen Simulationsbeispiel.

: Bearbeitet durch User
Autor: Georg M. (g_m)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
Sven K. schrieb:
> ...die Ströme durch die Widerstände bekannt sind

Dann muss es heißen: I1, I2, I3.

Autor: MikeH (Gast)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
Ja hast Recht, hab's auch gerade gesehen. Rang(I) < 3
Mit der Netzwerkanalyse geht es nur, wenn die Widerstände fest sind und 
U, I bestimmt werden sollen.

Autor: U.G. L. (dlchnr)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
Georg M. schrieb:
> Sven K. schrieb:
>> ...die Ströme durch die Widerstände bekannt sind
>
> Dann muss es heißen: I1, I2, I3.

Die Ströme sind alle bekannt - denn I3 ist immer I1 - I2, muss nicht 
extra gemessen werden!
Es ist einfach so, dass dass sich aus einem Satz Werte UA, UB, R1, R2, 
R3 genau ein Weretepaar I1, I2 ergibt - umgekehrt wird ein Satz Werte 
UA, UB, I1, I2 eben nicht nur von einem Satz Werte R1, R2, R3 erfüllt, 
sondern von vielen.

Wenn ich mich auf meinem Schmierblatt nicht verrechnet habe, gilt:

R2 = (I1^2 - n I2^2 + n I1 I2 - I1 I2) / (n UA I2 - UB I1)
R1 = (UA + R2 I2 - R2 I1) / I1
R3 = n R1

Für jeden Wert von n ergibt sich ein anderer Satz von Werten für R1, R2, 
R3.
Ich hab's nicht genauer untersucht, aber vermutlich wird man n nur aus 
einem bestimmten Bereich wählen dürfen, andernfalls werden einzelen 
Widerstände negativ!?

: Bearbeitet durch User
Autor: Georg M. (g_m)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
U.G. L. schrieb:
> Die Ströme sind alle bekannt - denn I3 ist immer I1 - I2, muss nicht
> extra gemessen werden!

Jetzt habe ich es endlich auch kapiert.

In umgekehrter Richtung ist die Aufgabe unlösbar, und wir bekommen einen 
Geradenabschnitt im positiven Oktanten als Lösung.

Autor: Sven Krauss (satirebird)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
Ich war zunächst auch der Überzeugung, dass es doch eine Lösung geben 
muss. Es sind ja alle Ströme und Spannungen bekannt. Der Knackpunkt ist, 
dass es eben nicht nur eine Lösung gibt sondern in einem bestimmten 
Bereich ziemlich viele.

Vielen Dank an alle!

Beitrag #5263970 wurde von einem Moderator gelöscht.

Antwort schreiben

Die Angabe einer E-Mail-Adresse ist freiwillig. Wenn Sie automatisch per E-Mail über Antworten auf Ihren Beitrag informiert werden möchten, melden Sie sich bitte an.

Wichtige Regeln - erst lesen, dann posten!

  • Groß- und Kleinschreibung verwenden
  • Längeren Sourcecode nicht im Text einfügen, sondern als Dateianhang

Formatierung (mehr Informationen...)

  • [c]C-Code[/c]
  • [avrasm]AVR-Assembler-Code[/avrasm]
  • [code]Code in anderen Sprachen, ASCII-Zeichnungen[/code]
  • [math]Formel in LaTeX-Syntax[/math]
  • [[Titel]] - Link zu Artikel
  • Verweis auf anderen Beitrag einfügen: Rechtsklick auf Beitragstitel,
    "Adresse kopieren", und in den Text einfügen




Bild automatisch verkleinern, falls nötig
Bitte das JPG-Format nur für Fotos und Scans verwenden!
Zeichnungen und Screenshots im PNG- oder
GIF-Format hochladen. Siehe Bildformate.

Mit dem Abschicken bestätigst du, die Nutzungsbedingungen anzuerkennen.