Forum: Analoge Elektronik und Schaltungstechnik Rauschen nichtinvertierender OPA


Announcement: there is an English version of this forum on EmbDev.net. Posts you create there will be displayed on Mikrocontroller.net and EmbDev.net.
von Irenaius K. (irenaius)


Angehängte Dateien:

Bewertung
0 lesenswert
nicht lesenswert
Bei der numerischen Berechnung von Rauschen von nichtidealen OPAs treten 
bei mir Abweichungen zu gängigen Simulationsprogrammen wie z.B. Spice 
oder ADS auf. Zunächst anhand eines einfachen Beispiels (siehe png). 
Beim nichtinvertierenden Verstärker habe ich in Spice alle Rauschquellen 
ausgeschaltet, bis auf das Stromrauschen. Dies hat eine eindeutige 
Frequenzabhängigkeit im Ergebnisfenster, was auf eine Abhängigkeit vom 
GBW hindeutet.

Wenn ich das ganze numerisch rechne würde ich aber
rechnen, wobei das Tilde eine Rauschdichte anzeigt, das In das 
Stromrauschen (hier erstmal const.) und RN den Rückkopplungsiwderstand. 
Es kommt also ein konstanter Wert heraus, ohne einen Abfall zu hohen 
Frequenzen.

Wie kann ich also bei dieser einfachen Rechnung nichtideale 
Charakteristika des OPAs beachten - also ein endlichen open loop gain, 
gain-bandwidth-product, etc.? Spielt der Eingangs- bzw. 
Ausgangsiwderstand des OPAs eine Rolle? Oder mach ich hier gänzlich 
etwas verkehrt?

Für das Spannungsrauschen beispielsweise kann man einfach mit dem closed 
loop gain unter Beachtung endlichens open loop gains rechnen.
Dabei gilt
Dies gilt ebenso für das thermische Rauschen von R1, nur mit dem nicht 
idealen closed loop gain für den invertierenden OPA.

Danke!

: Bearbeitet durch User
von Achim S. (Gast)


Bewertung
1 lesenswert
nicht lesenswert
Irenaius K. schrieb:
> RN den Rückkopplungsiwderstand.
> Es kommt also ein konstanter Wert heraus, ohne einen Abfall zu hohen
> Frequenzen.

Am Eingang rauscht es auch konstant, ohne zu hohen Frequenzen hin 
abzufallen. Am Ausgang siehst du es aber nur so weit konstant bleiben, 
wie die Verstärkung des OPV reicht.

Mach einfach einen Zwischenschritt um zu deiner Formel E_out=I_n*R_n zu 
kommen. Mach aus dem Stromrauschen erst mal ein Spannungsrauschen am 
Eingang, das sich durch den Spannungsabfall ein beiden Widerständen 
ergibt, die aus Sicht des OPV-Eingangs parallel wirken.

E_in = I_n * (R_1 || R_n)

Dieses Spannungsrauschen wird mit dem Verstärkungsfaktor des OPV 
verstärkt:

E_out = E_in * (R_1+R_n)/R_1
      = I_n * (R_1*R_n)/(R_n+R_1) * (R_1+R_n)/R_1

Wenn du das auskürzt kommst du auf deine Formel E_out = I_n * R_n. Aber 
die Verstärkung des Rauschens funktioniert nur innerhalb der Bandbreite 
der Verstärkerschaltung.

Du hast ein GBW = 12 MHz und eine Verstärkung von 10
-> bei 12MHz/10=1,2MHz liegt die Grenzfrequenz für die 
Spannungsverstärkung, ab da geht die Verstärkung in den Keller.

Irenaius K. schrieb:
> Für das Spannungsrauschen beispielsweise kann man einfach mit dem closed
> loop gain unter Beachtung endlichens open loop gains rechnen.

Ja, kannst du beim Strom genau so machen. Aber du musst in beiden Fällen 
beachten, dass Aol eine Frequenzabhängigkeit hat. Bei niedrigen 
Frequenzen kannst du die 1 im Nenner deiner Formel vergessen und die 
Verstärkung ist durch 1/k_r gegeben. Aber ab 1,2MHz gilt das nicht mehr 
(das ist Aol nur noch 10 und Aol*k_r wird 1) und die Verstärkung geht in 
den Keller.

Die anderen von dir genannten Parameter (endlicher open loop gain bei 
niedrigen Frequenzen, Eingangs- und Ausgangswiderstände des OPV) spielen 
bei dieser Betrachtung des Rauschens keine Rolle.

von Irenaius K. (irenaius)


Bewertung
0 lesenswert
nicht lesenswert
Hrm, kann man wohl so machen, danke.

> Mach einfach einen Zwischenschritt um zu deiner Formel E_out=I_n*R_n zu
> kommen. Mach aus dem Stromrauschen erst mal ein Spannungsrauschen am
> Eingang, das sich durch den Spannungsabfall ein beiden Widerständen
> ergibt, die aus Sicht des OPV-Eingangs parallel wirken.

Wird der endliche Ausgangswiderstand einfach ignoriert? Theoretisch wäre 
dieser ja am gleichen Knoten und führt dann zur internen Masse des OPV 
(was auch immer die ist).

> Die anderen von dir genannten Parameter (endlicher open loop gain bei
> niedrigen Frequenzen, Eingangs- und Ausgangswiderstände des OPV) spielen
> bei dieser Betrachtung des Rauschens keine Rolle.

Das Rauschen der OPV Interna ist ja mit den Rauschspannungs- und 
Stromquellen (Ersatzquellen) abgedeckt. Aber sie bei der Berechnung der 
Transferfunktionen zu vernachlässigen..machen das alle so?

von Achim S. (Gast)


Bewertung
0 lesenswert
nicht lesenswert
Irenaius K. schrieb:
> Wird der endliche Ausgangswiderstand einfach ignoriert?

Ja

Irenaius K. schrieb:
> Theoretisch wäre
> dieser ja am gleichen Knoten und führt dann zur internen Masse des OPV
> (was auch immer die ist).

Dann kannst du dir meinetwegen ausrechnen, dass der OPV intern "vor 
seinem Ausgangswiderstand" etwas stärker rauscht. Aber dieses stärkere 
Rauschen wird durch den Teiler aus Ausgangswiderstand und externem 
Widerstand wieder runtergeteilt, so dass du letztlich am Ausgang wieder 
genau I_n*R_n siehst.

Irenaius K. schrieb:
> Aber sie bei der Berechnung der
> Transferfunktionen zu vernachlässigen..machen das alle so?

Ich weiß nicht, ob ich die Frage verstehe. Meinst du, ob die internen 
Rauschspannungsquellen in die Berechnung der Transferfunktion mit 
eingehen sollten? Nein, warum sollten sie? Die Transferfunktion ist die 
Transferfunktion. Und das Rauschen ist das Rauschen.

Das Rauschen am Ausgang hängt natürlich von der Transferfunktion ab (je 
nachdem, mit welchem Faktor und bis zu welcher Frequenz die einzelnen 
Rauschanteile verstärkt werden).

von Irenaius K. (irenaius)


Bewertung
0 lesenswert
nicht lesenswert
Achim S. (Gast) schrieb:
> Ich weiß nicht, ob ich die Frage verstehe. Meinst du, ob die internen
> Rauschspannungsquellen in die Berechnung der Transferfunktion mit
> eingehen sollten? Nein, warum sollten sie? Die Transferfunktion ist die
> Transferfunktion. Und das Rauschen ist das Rauschen.

Nein, ich rede beispielsweise vom Ausgangswiderstand Ra. Rauschmäßig 
sind die Interna ja durch die Rauschquellen des OPV abgedeckt. Ein Teil 
von In müsste ja auch durch Ra fließen, damit wäre dann R1||(RN+Ra). Und 
wenn RN nicht so groß ist, hat das schon einen Einfluss (wenn man die 
interne Masse hinter Ra mit der Systemmasse gleichsetzt).

Achim S. (Gast) schrieb:
> Das Rauschen am Ausgang hängt natürlich von der Transferfunktion ab (je
> nachdem, mit welchem Faktor und bis zu welcher Frequenz die einzelnen
> Rauschanteile verstärkt werden).

Damit würde dann
E_out = I_n * (R_1*(R_n+R_a))/(R_n+R_a+R_1) * (R_1+R_n)/R_1
oder etwas ähnliches gelten.

von Achim S. (Gast)


Bewertung
0 lesenswert
nicht lesenswert
Irenaius K. schrieb:
> Und
> wenn RN nicht so groß ist, hat das schon einen Einfluss (wenn man die
> interne Masse hinter Ra mit der Systemmasse gleichsetzt).

Das hat zwar einen richtigen Aspekt, aber davon merkst du am Ausgang des 
OPV nichts. Wie oben schon kurz geschrieben:

Achim S. schrieb:
> Dann kannst du dir meinetwegen ausrechnen, dass der OPV intern "vor
> seinem Ausgangswiderstand" etwas stärker rauscht.

Etwas ausführlicher: ersetze R_n in Gedanken mal durch zwei halb so 
große Widerstände R_n/2 in Reihe.

Wenn du oben an den beiden Widerständen misst, dann wird das Rauschen so 
groß sein wie bisher berechnet: I_n * R_n.

Wenn du zwischen den beiden Widerständen misst wird es nur noch halb so 
groß sein: der Spannungsteiler zwischen dem verrauschten OPV-Ausgang und 
dem konstant gehaltenen OPV-Eingang halbiert auch das Rauschen. Zwischen 
den Widerständen siehst du nur I_n * R_n/2
(Das gilt natürlich wieder nur für die niedrigen Frequenzen, bei denen 
der OPV es schafft, den Eingang auf konstante, "unverrauschte" 
Spannungen auszuregeln.)

Jetzt schiebe in Gedanken die obere Hälfte des zusammengesetzten R_n "in 
den OPV" und betrachte ihn als Ausgangswiderstand des OPV. Am 
Gesamtwiderstand lägen zwar weiterhin I_n * R_n, aber den Wert siehst du 
nicht (weil er im Innern des OPV auftritt).

Zwischen den beiden Teilwiderständen (also am Ausgang des OPV) siehst du 
weiter nur I_n * R_n / 2. Für das Rauschen wirkt also genau der 
Widerstand, der zwischen der Messstelle (dem OPV-Ausgang) und dem 
OPV-Eingang vorhanden ist.

Irenaius K. schrieb:
> Damit würde dann
> E_out = I_n * (R_1*(R_n+R_a))/(R_n+R_a+R_1) * (R_1+R_n)/R_1
> oder etwas ähnliches gelten.

Ja. Wobei ich bei der Herleitung dieser Formel wieder die 
Frequenzabhängigkeit ignoriert hatte (um sie dann später als 
Grenzfrequenz von 1,2MHz zu berücksichtigen). Hier habe ich als 
Verstärkungsfaktor frequenzunabhängig 1/k_r=(R_1+R_n)/R_1. Tatsächlich 
ist das nur eine Näherung für Aol/(1+k_r*Aol) Für niedrige Frequenzen 
gilt diese Näherung sehr gut. Bei hohen Frequenzen macht sich die 
Frequenzabhängigkeit von Aol bemerkbar - was ja genau die Antwort auf 
deine ursprüngliche Frage war.

von Irenaius K. (irenaius)


Bewertung
0 lesenswert
nicht lesenswert
Achim S. schrieb:
> Ja. Wobei ich bei der Herleitung dieser Formel wieder die
> Frequenzabhängigkeit ignoriert hatte (um sie dann später als
> Grenzfrequenz von 1,2MHz zu berücksichtigen). Hier habe ich als
> Verstärkungsfaktor frequenzunabhängig 1/k_r=(R_1+R_n)/R_1. Tatsächlich
> ist das nur eine Näherung für Aol/(1+k_r*Aol) Für niedrige Frequenzen
> gilt diese Näherung sehr gut. Bei hohen Frequenzen macht sich die
> Frequenzabhängigkeit von Aol bemerkbar - was ja genau die Antwort auf
> deine ursprüngliche Frage war.

Aye, so hatte ich ja auch schon En transformiert.

Um das ganze zu vervollständigen möchte ich noch über das Rauschen von 
RN reden. Dieses liegt ja theoretisch direkt am Ausgang an. Die Textbuch 
Lösung ist EoRN = ERN. Aber auch hier zeigt PSpice eine 
Frequenzabhängigkeit. Wenn ich jetzt das vorgeschlagene Prozedere 
anwende, könnte man sagen, dass die Rauschspannung von RN am Eingang ein 
ERNinput = ERN * R1 / (RN+R1) hervorruft (per Spannungsteiler), dass ich 
dann mit Aol/(1+k_r*Aol) an den Ausgang transfomieren kann, für die 
Frequenzabhängigkeit. Dabei kommt dann ungefähr das PSpice Ergebnis 
raus. Ist das so korrekt?

Und dann ist mir noch unklar, wann man eigentlich den noninverting gain 
Aol/(1+k_r*Aol) und wann den inverting gain Aol * k_f /(1+k_r*Aol) 
verwendet (k_f = -R_N / ( R_1 + R_N ), regelungstechnischer Ansatz). 
Bisher habe ich für En den noninverting verwendet, weil En am 
noninverting Eingang liegt. Für ER1 habe ich den inverting gain 
verwendet.
Müsste man nicht für das Spannungsrauschen von In und RN ebenfalls den 
inverting gain verwenden?
Zugegebenermaßen ist der Unterschied im gain nicht sehr groß (1 bei 
kleinen Frequenzen).

von Achim S. (Gast)


Bewertung
0 lesenswert
nicht lesenswert
Uff, jetzt wird's detailliert. Um alles richtig zu beantworten müsste 
ich selbst erst mal wieder ein wenig in mich gehen.

Auf die Schnelle:
- du kannst das Rauschen von R1 als ideale Spannungsquelle betrachten, 
die mit dem inv-Gain R_n/R_1 verstärkt wird.
- oder du kannst das Rauschen von R1 als Spannungsquelle mit 
Innenwiderstand R1 betrachten, die erst mit dem Teilerfaktor 
R_n/(R1+R_n) heruntergeteilt wird (so dass der OPV-Eingang eine kleinere 
Spannung sieht) und dann mit dem (größeren) non-inv-Gain (R1+R_n)/R1 
nachverstärkt wird.

Beide male hast du das identische Ergebnis.

Ähnliches galt oben für die Betrachtung des I_n-Rauschens. Du kannst 
(innerhalb der Bandbreite des OPV) sagen, dass der OPV-Eingang auf 
konstante Werte ausgeregelt wird. Am Ausgang muss deshalb I_n*R_n 
anliegen.

Oder du kannst es so betrachten wie oben geschehen (in Spannungsrauschem 
am OPV-Eingang umrechnen und mit dem non-inv-Gain verstärken. Zwei 
Betrachtungsweisen, die das selbe Ergebnis liefern

Was die weiteren Fragen angeht: hier ein sehr kompaktes "Textbuch", bei 
dem auch die endliche Bandbreite der OPV-Schaltung auch bezüglich der 
Auswirkung des Widerstandsrauschens erwähnt wird.

https://www.analog.com/media/en/training-seminars/tutorials/MT-049.pdf

von Irenaius K. (irenaius)


Bewertung
0 lesenswert
nicht lesenswert
Achim S. schrieb:
> Auf die Schnelle:
> - du kannst das Rauschen von R1 als ideale Spannungsquelle betrachten,
> die mit dem inv-Gain R_n/R_1 verstärkt wird.
> - oder du kannst das Rauschen von R1 als Spannungsquelle mit
> Innenwiderstand R1 betrachten, die erst mit dem Teilerfaktor
> R_n/(R1+R_n) heruntergeteilt wird (so dass der OPV-Eingang eine kleinere
> Spannung sieht) und dann mit dem (größeren) non-inv-Gain (R1+R_n)/R1
> nachverstärkt wird.
>
> Beide male hast du das identische Ergebnis.
>
> Ähnliches galt oben für die Betrachtung des I_n-Rauschens. Du kannst
> (innerhalb der Bandbreite des OPV) sagen, dass der OPV-Eingang auf
> konstante Werte ausgeregelt wird. Am Ausgang muss deshalb I_n*R_n
> anliegen.
>
> Oder du kannst es so betrachten wie oben geschehen (in Spannungsrauschem
> am OPV-Eingang umrechnen und mit dem non-inv-Gain verstärken. Zwei
> Betrachtungsweisen, die das selbe Ergebnis liefern

Jipp, bis auf den Unterschied, dass die Betrachtung mit der Verstärkung 
mit non-inv-Gain es erlaubt, die endliche Bandbreite sofort mit 
einzuberechnen - die Methode ist also mächtiger.

Meine Frage zuvor war ja eigentlich auf das Rauschen von RN bezogen 
statt auf R1, aber ich nehme mal an, dass meine Vorgehensweise mit RN 
dann legitim ist.

> Was die weiteren Fragen angeht: hier ein sehr kompaktes "Textbuch", bei
> dem auch die endliche Bandbreite der OPV-Schaltung auch bezüglich der
> Auswirkung des Widerstandsrauschens erwähnt wird.
>
> https://www.analog.com/media/en/training-seminars/tutorials/MT-049.pdf

In dem Link wird der Ausdruck des noise gain (immer = noninverting gain) 
verwendet, welcher auf alle RTI (referred to input) Rauschquellen 
angewendet wird. Dabei scheint es in dem "Textbuch" keine Rolle zu 
spielen,  ob die Quelle am inverting oder noninverting input anliegt.

Es wird gesagt, das die Vorgehensweise eigentlich die Berechnung des 
Rauschens am Ausgang ist, und dann das RTI Rauschen durch division mit 
dem noise gain zu erhalten.

-> Der sicherste wäre also zunächst das RTO (referred to output) 
Rauschen zu berechnen, ohne Berücksichtigung der Bandbreite bzw. 
endlichen open loop Verstärkung; dann durch den noise gain teilen, und 
dann wieder auf den Ausgang rechnung, mit einem noise gain unter 
Berücksichtigung von endlichem  open loop Verstärkung.

--------------------------------------------------------------
Danke soweit!
Mich wundert ein wenig, dass man darüber quasi nichts findet, die 
Anwendung das Rauschen für ein System  mit OPV zu berechnen, welches im 
MHz Bereich arbeitet ist doch gar nicht so abwegig..

: Bearbeitet durch User

Antwort schreiben

Die Angabe einer E-Mail-Adresse ist freiwillig. Wenn Sie automatisch per E-Mail über Antworten auf Ihren Beitrag informiert werden möchten, melden Sie sich bitte an.

Wichtige Regeln - erst lesen, dann posten!

  • Groß- und Kleinschreibung verwenden
  • Längeren Sourcecode nicht im Text einfügen, sondern als Dateianhang

Formatierung (mehr Informationen...)

  • [c]C-Code[/c]
  • [code]Code in anderen Sprachen, ASCII-Zeichnungen[/code]
  • [math]Formel in LaTeX-Syntax[/math]
  • [[Titel]] - Link zu Artikel
  • Verweis auf anderen Beitrag einfügen: Rechtsklick auf Beitragstitel,
    "Adresse kopieren", und in den Text einfügen




Bild automatisch verkleinern, falls nötig
Bitte das JPG-Format nur für Fotos und Scans verwenden!
Zeichnungen und Screenshots im PNG- oder
GIF-Format hochladen. Siehe Bildformate.
Hinweis: der ursprüngliche Beitrag ist mehr als 6 Monate alt.
Bitte hier nur auf die ursprüngliche Frage antworten,
für neue Fragen einen neuen Beitrag erstellen.

Mit dem Abschicken bestätigst du, die Nutzungsbedingungen anzuerkennen.