mikrocontroller.net

Forum: Digitale Signalverarbeitung / DSP Von Signalantwort auf Implusantwort schließen


Autor: Simon R. (corabost)
Datum:
Angehängte Dateien:

Bewertung
0 lesenswert
nicht lesenswert
Hallo,

Ich habe gerade ein verständnisproblem mit einer Aufgabe. Die 
Systemantwort auf ein Signal ist gegeben, sowie das Signal geplotted. In 
einem vorherigen Aufgaben teil habe ich bereits anhand dieser Angaben 
auf das Signal schließen können. Alles zu sehen im ersten Bild-Upload.

Nun habe ich schwierigkeiten folgende Aufgabe zu lösen: Es geht darum 
die Impulsantwort anzugeben. Ich habs versucht und kam auf 
-1/2*δ(t)-1/2*δ(t+2). Das ist aber anscheinend falsch, denn in der 
Lösung steht das was ich im zweiten Bild hochgeladen hab. Jetzt meine 
Frage: Wie kommt man darauf? Warum ist die Impulsanrtwort so wie auf dem 
zweiten Bild zu sehen?

Autor: A. S. (rava)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
Die Systemantwort g2 besteht aus ganz vielen Impulsantworten h2, 
hintereinandergereiht. Für jeden Wert in s2 (hier 3) wird eine 
Impulsantwort zurückgegeben. Alle überlagert führen zu g2.

Welche Gleichungen hast du bisher aufgeschrieben?

Autor: Simon R. (corabost)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
A. S. schrieb:
> Die Systemantwort g2 besteht aus ganz vielen Impulsantworten h2,
> hintereinandergereiht.

Das ist soweit verständlich, ja. Denn g2 ist die Antwort des Systems auf 
s2, welches letztendlich auf "unendlich vielen" Impulsen gebildet werden 
kann. Demnach leuchtet es mir ein dass g2 sich aus unendlich vielen 
Impulsantworten h2 zusammensetzt.

A. S. schrieb:
> Für jeden Wert in s2 (hier 3) wird eine
> Impulsantwort zurückgegeben. Alle überlagert führen zu g2.

In wiefern setzt sich s2 aus drei "Werten" zusammen? Meinst du aus drei 
Funktionen? Wenn ja, auch das ist soweit absolut verständlich für mich, 
die drei Dreiecksfunktionen halt. Und dass die einzelnen Systemantworten 
von den drei Dreiecksfunktionen zusammenaddiert dann g2 ergeben, auch 
das erscheint mir völlig klar.

Was ich hingegen nicht verstehe ist, warum die Impulsantwort der 
(negativen) Summation sämtlicher Dirak-Impulse von 0 bis t entsprechen 
soll, wie in der Lösung (siehe zweite Grafik in der Frage) dargestellt? 
Angenommen ich stelle mir vor, dass der gegebene s2 sich nicht aus den 
Dreieckfunktionen, sondern aus äquivalenten Diraks zusammensetzt (also 
-δ(t)+2δ(t-1)-δ(t-2) )... Wie sollte ich jetzt z.B. auf g2 schließen? 
Und das gleiche Spiel mit einem einfachen Dirak δ(t): Wie komme ich auf 
h2(t)? Warum ist das eine Aufsummierung von allen ganzzahligen Diraks 
von 0 bis t? Ich verstehe einfach nicht wie ich darauf kommen soll?

Autor: A. S. (rava)
Datum:

Bewertung
1 lesenswert
nicht lesenswert
Wie ist denn dein Ansatz?

Man könnte versuchen, im Laplaceraum zu rechnen. Aber für dich 
durchexerzieren möchte ich das nicht.

Autor: Andreas H. (ahz)
Datum:

Bewertung
1 lesenswert
nicht lesenswert
Simon R. schrieb:
> Angenommen ich stelle mir vor, dass der gegebene s2 sich nicht aus den
> Dreieckfunktionen, sondern aus äquivalenten Diraks zusammensetzt (also
> -δ(t)+2δ(t-1)-δ(t-2) )...

Das ist (vermutlich) genau dass was A.S. meinte :)

Deine "Dreiecke" sind eher "ungewöhnlich".

Simon R. schrieb:
> Wie sollte ich jetzt z.B. auf g2 schließen?

Kannst Du Z-Transformation (z.B. 
https://de.wikipedia.org/wiki/Z-Transformation)?

Im Z-Berecih kannst Du Deine Aufgabe als G = H . S beschreiben, wobei 
die Grossbuchstaben die Z-Transformierten Deiner Impulsfolgen und H die 
Übertragungsfunktion ist.

Also ist H = G / S.

Das solltest Du mal SELBER durchrechnen (Die Lösung sollte H = -z/(z-1) 
sein).

Ein Impuls im Zeitbereich hat ja die Z-Transformierte 1. Also ist Deine 
Systemantwort G = H.

Das mal in den Zeitbereich transformiert ergibt dann auch (fast) das 
Ergebnis aus Deinem upload2.png, bis auf ein winziges Detail über das 
alle stolpern:
Statt einer Folge von -Delta's bekommst Du eine Folge von -1 heraus.
Das ist aber ok, denn "eigentlich" (aka mathematisch) integrierst Du ja 
JEDEN einzelnen Diracimpuls über den gesamten Zeitbereich.
Und dieses Integral ist gerade 1 für jeden einzelnen Impuls ;)

Hth
Andreas

Autor: Simon R. (corabost)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
A. S. schrieb:
> Wie ist denn dein Ansatz?

Also mein ursprünglicher Ansatz war folgender: Ich habe versucht g2(t) 
mithilfe von s2(t) auszudrücken. Das Resultat auf das ich dabei kam war 
nach etwas rumprobieren gs(t)=-1/2*s2(t)-1/2*s2(t+2). Aber jetzt wo ich 
hierfür mal die Werte eingesetzt habe sehe ich, dass das so nicht 
stimmt.

A. S. schrieb:
> Man könnte versuchen, im Laplaceraum zu rechnen.

Ja, das wäre wohl keine dumme Idee. Rein theoretisch, ginge das 
folgendermaßen? Erst S(p) und G(p) ermitteln, um dann H auszurechnent 
mit G=H*S => H=G/S? Ist das so korrekt?

Andreas H. schrieb:
> Im Z-Berecih kannst Du Deine Aufgabe als G = H . S beschreiben, wobei
> die Grossbuchstaben die Z-Transformierten Deiner Impulsfolgen und H die
> Übertragungsfunktion ist.
>
> Also ist H = G / S.
>
> Das solltest Du mal SELBER durchrechnen (Die Lösung sollte H = -z/(z-1)
> sein).

Okay, das gleiche wie im Laplace... Ist die Z-Transfomation ein anderes 
Wort für die Laplace-Transpormation?

Autor: Martin O. (ossi-2)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
Ich würde versuchen die gegebene Antwort des Systems von "links nach 
rechts" aufzubauen. Also zuerst: Mit welchem Dreiecksimpuls schafft man 
das linkeste Geradenstück? Was muss man dann noch addieren um das 
nächste Geradenstück zu erhalten und so fort. Vermutlich merkt man dann, 
dass man nach rechts unendlich weitermachen muss, deswegen die unendlich 
auusgedehnte Stossantwort des Systems.

Autor: Andreas H. (ahz)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
Simon R. schrieb:
> Ist die Z-Transfomation ein anderes
> Wort für die Laplace-Transpormation?

Nein.

Die Laplacetransformation ist für zeitkontinuierliche Systeme, die 
Z-Transformation für abgetastete Systeme.

Insbesondere Aliaseffekte hat man bei zeitkontinuierlichen Systemen 
nicht. Die werden bei abgetasteten Systemen aber sehr "gefährlich".

Unter Beachtung gewisser Randbedingungen kann man von der Einen in die 
andere Darstellung umwandeln, was auch für verschiedene Aufgaben benutzt 
wird (z.B. analoge Filter für DSP modellieren).

HtH
Andreas

P.S.:
Insbesondere existiert die Z-Transformierte NUR in den Abtastpunkten. 
Werte zwischen zwei Abtastpunkten sind nicht definiert.
Dein Bild in upload.png stellt also (streng genommen) kein Signal in Z 
dar.
Im Zeitbereich kannst Du ein "echtes" Dreiecksignal aber garnicht 
realisieren, den wie ist den die Ableitung des Signals bei t=1?
Google mal nach Energie- / Leistungssignalen
A.

: Bearbeitet durch User
Autor: A. S. (rava)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
Simon R. schrieb:
> Erst S(p) und G(p) ermitteln, um dann H auszurechnent
> mit G=H*S => H=G/S? Ist das so korrekt

genau. Wird nicht schön, und erfordert wohl ein paar ungewöhnliche 
Umformungen, aber müsste klappen.

Autor: Simon R. (corabost)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
Danke für die Ausführeng @ahz Die Z-Transformierte ist glaube ich in der 
Aufgabe auch nicht anzuwenden, aber dann hab ich jetzt zumindest den 
Unterschied verstanden.

@rava Ich hätte es normalerweise auch am ehesten so gelöst. Allerdings 
müsste man hierfür erst mal herausfinden, was die Laplace-Transformierte 
der Dreieckfunktion ist. Ich vermute dass dies mit einem Integral 
ausrechenbar ist? Aber auf jeden Fall auch nichts was vorgesehen ist, 
denn stehen benötigte Laplace-Transformierte stets in einer beiliegenden 
Tabelle, und ist dabei die Dreieckfunktion nicht dabei.

Ich habs so auch versucht zu lösen indem ich g(t) in eine s(t) 
Abhängigkeig umschreiben wollte, um somit dann durch ersetzen von g 
durch h und s durch δ die Lösung zu erhalten. Scheint sich allerdings 
nicht so einfach ich die Form bringen zu lassen.

Ist noch irgendein weiterer Lösungsansatz denkbar? Eventuell durch 
scharfes hinschauen. Ist das das was du gemeint hast @ossi-2 ? Durch 
scharfes Hinschauen von s und g auf h schließen zu können?

Autor: Markus B. (russenbaer)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
Warum alles so kompliziert?
Du kannst versuchen grafisch zu entfalten.
Das ist was ossi-2 vorschlägt.

g2(t) = h2(t) * s2(t)

h2(t) ist gefragt...

Das heißt:
Zuerst zeichne Dir g2(t) auf.
Dann überleg Dir wie h2(0) aufgrund von s2(0) und g2(0) ausschaut.
Dann mach das für h2(1), h2(2) usw.

Das ist auch das was:

Martin O. schrieb:
> Ich würde versuchen die gegebene Antwort des Systems von "links nach
> rechts" aufzubauen. Also zuerst: Mit welchem Dreiecksimpuls schafft man
> das linkeste Geradenstück? Was muss man dann noch addieren um das
> nächste Geradenstück zu erhalten und so fort. Vermutlich merkt man dann,
> dass man nach rechts unendlich weitermachen muss, deswegen die unendlich
> auusgedehnte Stossantwort des Systems.

vorschlägt.

lg
Markus

Autor: Simon R. (corabost)
Datum:
Angehängte Dateien:

Bewertung
0 lesenswert
nicht lesenswert
Markus B. schrieb:
> Du kannst versuchen grafisch zu entfalten.

Ich erkenne graphisch ehrlich gesagt gar nichts, bzw. schaffe es nicht 
auf h(t) zu schließen. Schau hier mal ein anderes Beispiel, mit g(t) = 
h(t) * s(t) im ersten Anhang. Also s(t) ist eine Sprungfunktion die um 
ein halb nach rechts verschoben ist. Wie muss h aussehen, damit dort ein 
Dreieck bei rauskommt? Als Lösung habe ich wie im upload4 zu sehen. Ich 
verstehe alles, nur eins nicht: Wie komme ich darauf, dass h(t) 
letztendlich nur ein abgeleitetes Dreieck ist (das um 1/2 verschoben 
ist, aber das ist mir klar)?

Autor: Dergute W. (derguteweka)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
Moin,

Simon R. schrieb:
> Wie komme ich darauf, dass h(t)
> letztendlich nur ein abgeleitetes Dreieck ist (das um 1/2 verschoben
> ist, aber das ist mir klar)?

Die Verschiebung, weil der Einheitssprung ja um 1/2 verschoben war. Und 
die Ableitung, weil die Ableitung des Einheitssprungs ja der Dirac ist.

Gruss
WK

Autor: Dergute W. (derguteweka)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
Moin,

So, hab' mir mal noch die erste Aufgabe hier im Thread reingezogen. Ja, 
die ist schon bissi unangenehm.
Man koennte ggf. auf die Idee kommen, dass ja bei den angegebnenen Ein- 
und Ausgangssignalen jeweils nur immer diese ollen Dreiecke als Element 
der Signale vorkommen. Daraus koennte man dann messerscharf folgern, 
dass man auch genausogut statt jedem Dreieck z.B. einen Diracstoss 
nehmen koennte. Dann haette man also ein Eingangssignal vom Kaliber: -1 
2 -1 und ein Ausgangssignal vom Kaliber 0, 1, -1  So, und mit diesen 
Dingern koennte es einfacher sein, dann die "Rueckwaertsfaltung" 
(deconvolution) mittels Papier und Bleistift vorzunehmen.
Aber ich weiss nicht, ob ich in einer Pruefung ohne die Musterloesung 
draufgekommen waere.

Gruss
WK

Autor: A. S. (rava)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
Simon R. schrieb:

> @rava Ich hätte es normalerweise auch am ehesten so gelöst. Allerdings
> müsste man hierfür erst mal herausfinden, was die Laplace-Transformierte
> der Dreieckfunktion ist. Ich vermute dass dies mit einem Integral
> ausrechenbar ist? Aber auf jeden Fall auch nichts was vorgesehen ist,
> denn stehen benötigte Laplace-Transformierte stets in einer beiliegenden
> Tabelle, und ist dabei die Dreieckfunktion nicht dabei.

aber in deiner Tabelle ist ein Dirac-Impuls drin, oder?
Und die Formel für's Integrieren, oder?
Und die Formel für die zeitliche Verschiebung, oder?

Und dieses Dreiecks-Delta, wie kann man das anhand der Formelsammlung 
darstellen? was ist z.B. dessen Ableitung? Geht das als 
Linearkombination von irgendwas, was in der Formelsammlung steht?

Wenn man's schlau umformt, geht's in ein paar Zeilen

: Bearbeitet durch User
Autor: Markus B. (russenbaer)
Datum:
Angehängte Dateien:

Bewertung
1 lesenswert
nicht lesenswert
Vielleicht siehst Du es leichter wenn Du Dir die Signale vereinfachst 
und dieses Dreieck wegbekommst....

siehe Anhang...

Für die grafische Faltung "spiegelst" Du das Eingangssignal an der 
y-Achse.
Dann "ziehst" Du es für jeden Zeitpunkt über Deine Impulsantwort und 
überlegst Dir welche Fläche das Produkt des Eingangssignals mit der 
Impulsantwort von -inf bis zu dem Zeitpunkt den Du betrachtest hat.
Das ist dann der Wert des Ausgangssignals am Punkt den Du betrachtest.
Das musst Du für jeden Zeitpunkt tun.

Hier hast Du eine etwas andere Aufgabenstellung. Du hast Eingangs- und 
Ausgangssignal und musst Dir die Impulsantwort konstruieren.
d.h. wie schaut der eine Multiplikand aus damit Du das gewünschte 
Ergebnis bekommst.

Die grafische Faltung ist in der zweiten Skizze, ich hoffe damit wird es 
etwas klarer.

Gute Nacht,
Markus

Autor: A. S. (rava)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
aja, guter punkt. Man muss das Dreieck gar nicht transformieren; das 
kürzt sich eh. Noch einfacher...


https://de.wikipedia.org/wiki/Geometrische_Reihe

: Bearbeitet durch User
Autor: Markus B. (russenbaer)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
A. S. schrieb:
> Noch einfacher...
>
> https://de.wikipedia.org/wiki/Geometrische_Reihe

Da war's mir schon zu spät  daran hab ich nicht gedacht... Man müsste 
nur zeigen oder suchen dass die Summenformel für die  Reihe mit 
q=Exp(-jw) gilt , was sie sicher auch tut...
Dann kann man das auch schön analytisch lösen.

Gute Idee!

LG Markus

Autor: Simon R. (corabost)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
A. S. schrieb:
> aber in deiner Tabelle ist ein Dirac-Impuls drin, oder?

Dirac steht natürlich drin. Im Laplacebereich wäre das einfach 1.

A. S. schrieb:
> Und die Formel für's Integrieren, oder?
> Und die Formel für die zeitliche Verschiebung, oder?

Ich bin mir nicht so sicher was du mit der Formel fürs Integrieren 
meinst. Meinst du um ein Dreiecksignal zu integrieren? Oder einen Dirac 
zu integrieren? Da müsste ich jetzt spontan gerade passen... Meinst du 
mit zeitlicher Verschiebung einfach s(t) um t0 verschobe glein s(t-t0)? 
Bzw. im Frequenzbereich entsprechent im exponenten von e?

A. S. schrieb:
> Wenn man's schlau umformt, geht's in ein paar Zeilen

Ich denke auch dass es eine sehr unkomplizierte und kurze Lösung geben 
muss. Aber ich habe leider nicht so wirklich einen Ansatz. Ich weiß auch 
nicht ob ich es irgendwie durch geschicktes substiturieren oder umformen 
herausfinden könnte, oder einfach nur durch schaffes hinschauen und 
überlegen...

Markus B. schrieb:
> Die grafische Faltung ist in der zweiten Skizze, ich hoffe damit wird es

Erst mal vielen vielen Dank für diesen schönen Lösungsweg. Also, ich 
rekapituliere es kurz um zu sehen ob ich ihn verstanden habe: Zuerst 
s(t) und g(t) in den Frequenzbereich übertragen, und daraus dann H=G/S 
bilden. Dann kann man durch genaues hinschauen erkennen, dass G/S 
äquivalent der Ableitung von G durch die Ableitung von S ist. Daher 
ermitteln wir jetzt g'(t) und s'(t), wobei ich annehme dass man wissen 
sollte, dass ein DIrac aufintegriert zu der Summe von einem Dreieck und 
einem negierten und um eins nach rechts verschobenen Dreieck ist?
Durch Vergleichen von s und g unter Voraussetzung dass g(t)=s(t)*h(t) 
kann man dann auf h(t) schließen... WObei ich nicht erkenne, wo hier die 
Summierung unendlich vieler Terme auftauchen soll.

A. S. schrieb:
> aja, guter punkt. Man muss das Dreieck gar nicht transformieren; das
> kürzt sich eh. Noch einfacher...
>
> https://de.wikipedia.org/wiki/Geometrische_Reihe

So allerdings verstehe ich es jetzt glaube ich schon besser. Der Bruch 
im Frequenzbereich H wir also zur Summierung im Zeitbereich h?

Autor: Markus B. (russenbaer)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
Simon R. schrieb:
> Erst mal vielen vielen Dank für diesen schönen Lösungsweg. Also, ich
> rekapituliere es kurz um zu sehen ob ich ihn verstanden habe: Zuerst
> s(t) und g(t) in den Frequenzbereich übertragen, und daraus dann H=G/S
> bilden. Dann kann man durch genaues hinschauen erkennen, dass G/S
> äquivalent der Ableitung von G durch die Ableitung von S ist. Daher
> ermitteln wir jetzt g'(t) und s'(t), wobei ich annehme dass man wissen
> sollte, dass ein DIrac aufintegriert zu der Summe von einem Dreieck und
> einem negierten und um eins nach rechts verschobenen Dreieck ist?
> Durch Vergleichen von s und g unter Voraussetzung dass g(t)=s(t)*h(t)
> kann man dann auf h(t) schließen... WObei ich nicht erkenne, wo hier die
> Summierung unendlich vieler Terme auftauchen soll.

Hallo,

Nein es ist nicht die Ableitung. Da wars nur spät und ich wollte 
Kennzeichnen das es sich ganz einfach um andere Signale handelt.

Du rechnest Dir H im Frequenzbereich aus H = -1/(1-exp(-jw)). Das 
Dreiecksignal musst Du nicht explizit transformieren da es sich dann 
sowieso kürzt.

Dann kannst Du 1/1-q mit q<|1| ist gleich eine geometrischer Unendlicher 
Reihe - siehe Wikilink. Normalerweise bringst Du Reihen die in einer 
Summenformel sind in eine geschlossene Form. Hier machst Du es genau 
umgekehrt. Du schreibst H als Summenformel, dann kannst Du es 
zurücktransformieren.
Du müsstest allerdings zeigen (oder irgendwo raussuchen) das mit q = 
exp(-jw) die Reihe gegen die geschlossene Form konvergiert.


Spät in der Nacht habe ich nicht erkannt das es die geometrische Reihe 
ist... das that rava erkannt!
Deshalb habe ich noch einmal grafisches Falten eingebracht. Nun aber mit 
den einfacheren Signalen die sich direkt aus dem Rücktransformieren des 
Nenners und des Zählers von deinem vereinfachten H ergeben. Das eine 
Signal ist ein Dirac, das andere der positive und der negative Dirac; 
wobei der eine verschoben ist.

Die Notation war etwas ungeschickt, das Stricherl hat nicht die 
Ableitung bedeutet sondern ganz einfach um zu zeigen das es sich um 
andere Signale handelt und nicht um deine Ursprungssignale.

lg
Markus

Antwort schreiben

Die Angabe einer E-Mail-Adresse ist freiwillig. Wenn Sie automatisch per E-Mail über Antworten auf Ihren Beitrag informiert werden möchten, melden Sie sich bitte an.

Wichtige Regeln - erst lesen, dann posten!

  • Groß- und Kleinschreibung verwenden
  • Längeren Sourcecode nicht im Text einfügen, sondern als Dateianhang

Formatierung (mehr Informationen...)

  • [c]C-Code[/c]
  • [avrasm]AVR-Assembler-Code[/avrasm]
  • [code]Code in anderen Sprachen, ASCII-Zeichnungen[/code]
  • [math]Formel in LaTeX-Syntax[/math]
  • [[Titel]] - Link zu Artikel
  • Verweis auf anderen Beitrag einfügen: Rechtsklick auf Beitragstitel,
    "Adresse kopieren", und in den Text einfügen




Bild automatisch verkleinern, falls nötig
Bitte das JPG-Format nur für Fotos und Scans verwenden!
Zeichnungen und Screenshots im PNG- oder
GIF-Format hochladen. Siehe Bildformate.

Mit dem Abschicken bestätigst du, die Nutzungsbedingungen anzuerkennen.