mikrocontroller.net

Forum: Digitale Signalverarbeitung / DSP Bodediagramm konstruieren


Announcement: there is an English version of this forum on EmbDev.net. Posts you create there will be displayed on Mikrocontroller.net and EmbDev.net.
Autor: Zeichnervomjahrhundert (Gast)
Datum:
Angehängte Dateien:

Bewertung
0 lesenswert
nicht lesenswert
Versuche seit Stunden Bodediagramm zu konstruieren mir beizubringen.
Z.b. würde ich das Bodediagramm im Anhang nachvollziehen können. Es gilt 
für die Zeitkonstanten T1>T2>T3>T4


Meine Idee (zunächst nur Amplitudengang):

Ich habe vier Teilsysteme gegeben:

(T1s+1): PD1 Odb bis 1/T1 dann +20db pro dekade

1/(T2T3s^2): Doppelter Integrator von links kommend mit -40db pro dekade 
durch w=1 und rechts weiter -40db pro dekade

1/(T4s+1): PT1  0db bis 1/T4 dann -20db pro Dekade


So nachdem ich die Einzelglieder eingetragen habe müsste man doch auf 
die Musterlösung kommen indem man alle Amplitudengänge überlagert oder? 
Wieso sind dann Informationen wie w=1 nicht in der Musterlösung 
vorhanden?

Wie komm ich auf die richtige Lösung wie im Anhang was mach ich falsch ?

Autor: Marcus H. (Firma: www.harerod.de) (lungfish) Benutzerseite
Datum:

Bewertung
0 lesenswert
nicht lesenswert
Zeichnervomjahrhundert schrieb:
> Versuche seit Stunden Bodediagramm zu konstruieren mir beizubringen.
Naja, andere checken das nach 3 Semestern noch nicht. Die liegst noch 
gut in der Zeit.

Ich bin ja nicht mehr der frischeste, daher wäre mein Buchvorschlag zu 
dem Thema:
Heinz Unbehauen, Regelungstechnik 1. Ich habe hier die 8.Ausgabe von 
1994.
Die Mathematik selber ist über hundert Jahre alt.
Kapitel 4 hat Beispieldiagramme und Berechnungsmethoden.


> Z.b. würde ich das Bodediagramm im Anhang nachvollziehen können. Es gilt
> für die Zeitkonstanten T1>T2>T3>T4
> Meine Idee (zunächst nur Amplitudengang):
> Ich habe vier Teilsysteme gegeben:
> (T1s+1): PD1 Odb bis 1/T1 dann +20db pro dekade
> 1/(T2T3s^2): Doppelter Integrator von links kommend mit -40db pro dekade
> durch w=1 und rechts weiter -40db pro dekade

Was ist w=1?

> 1/(T4s+1): PT1  0db bis 1/T4 dann -20db pro Dekade


> So nachdem ich die Einzelglieder eingetragen habe müsste man doch auf
> die Musterlösung kommen indem man alle Amplitudengänge überlagert oder?

> Wieso sind dann Informationen wie w=1 nicht in der Musterlösung
> vorhanden?
>
> Wie komm ich auf die richtige Lösung wie im Anhang was mach ich falsch ?

Das Bild im Anhang erscheint plausibel - was würdest Du anders machen 
wollen? Bitte als Zeichnung, nicht in Prosa.

Autor: RTA (Gast)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
müsste das PD1 Glied dann nicht wie du sagst mit +20dB an der 
Knickfrequenz steigen?

btw. mein Regelungstechnik Prof hätte gekotzt bei der Schrift.

Autor: Michel M. (elec-deniel)
Datum:

Bewertung
0 lesenswert
nicht lesenswert

Autor: Zeichnervormjahrhundert (Gast)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
Also ich muss zugeben, den Link den du mir geschickt hast gibt ein guten 
Überblick und ich verstehe da auch alles, da es etwas einfacher ist mit 
konstanten das Bodediagramm zu erstellen. Dort wirken die Integratoren 
bzw Dämpfungsanteile stets bei w=1 was mir auch bewusst ist. Hier in der 
Musterlösung jedoch bei A=1 und w=1/T2T3. Müsste nicht T2T3 ein PGlied 
sein, also 20log(T2T3).

Also wieso aufeinmal A=1 und w=1/T2T3 anstatt w=1 und 20log(T2T3)

Autor: Zeichnervormjahrhundert (Gast)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
Also es geht um den Doppelten Integrator

Wieso aufeinmal A=1 und w=1/T2T3 anstatt w=1 und 20log(1/T2T3)

Autor: Zeichnervormjahrhundert (Gast)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
Bei A=1 und w=1/T2T3 geht doch irgendwie die Information 1/T2T3 
verloren, welcher ein P Glied darstellen sollte

Autor: Marcus H. (Firma: www.harerod.de) (lungfish) Benutzerseite
Datum:

Bewertung
0 lesenswert
nicht lesenswert
Wann ist die Nachprüfung?

Autor: Zeichnervormjahrhundert (Gast)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
Wieso Nachprüfung?

Ich beherrsche die Grundlagen von Modellbildung bis Digitale Regelung, 
aber habe Probleme bei Bodediagrammen wie diese im Anhang. Der Link der 
mir empholen wurde, da kann ich alles nachvollziehen, da die 
Integratoren/Dämpfungsanteile stets bei A=0 und w=1 wirken. Hier 
indieser Aufgabe wirkt jedoch der doppelte Integrator bei w=1/T2T3 und 
A=1 wieso ?

Muss es nicht w=1 sein und A=0 und 1/T2T3 ist der P-Anteil also 
20log(1/T2T3)

Autor: Marcus H. (Firma: www.harerod.de) (lungfish) Benutzerseite
Datum:

Bewertung
0 lesenswert
nicht lesenswert
Zeichnervormjahrhundert schrieb:
> Wieso Nachprüfung?
>
> Ich beherrsche die Grundlagen von Modellbildung bis Digitale Regelung,
> aber habe Probleme bei Bodediagrammen wie diese im Anhang. Der Link der
> mir empholen wurde, da kann ich alles nachvollziehen, da die
> Integratoren/Dämpfungsanteile stets bei A=0 und w=1 wirken. Hier
> indieser Aufgabe wirkt jedoch der doppelte Integrator bei w=1/T2T3 und
> A=1 wieso ?


Dann fehlt wohl nur noch ein klitzekleines Bisschen Transferdenken:

Man nehme diese Tabelle mit Erstellungsregeln:
http://lpsa.swarthmore.edu/Bode/BodeReviewRules.html

Hier wird eine Polstelle 1/s beschrieben mit
"-20 dB/decade passing through 0 dB at ω=1" (was schlampig beschrieben 
ist, da es eigentlich ω=(1/Sekunde) ist. Hier sieht man mal wieder, 
warum wir in Deutschland früher p als Laplaceoperator verwendet haben 
und nicht das aus dem amerikanischen Raum stammende s. Im realen Leben 
noch den Faktor ZwoPiEff nicht vergessen. ;)

Ab hier verwende ich p als Laplace Operator, und s ist das SI-Symbol für 
die Zeiteinheit Sekunde:

Die Einheitspolstelle lässt sich beschreiben als Polstelle 1/(T * p), 
wobei T = 1s ist.

Wenn eine Polstelle nun eine andere Verstärkung hat, dann verschiebt 
sich die Abszisse des Nulldurchgangs entsprechend.

Die Überlagerungen der Einzelnen Pol-Nullstellen ergibt sich im 
doppeltlogarithmischen Bode-Diagramm entsprechend der Rechenregeln für 
Logarithmen. Das ist der Charme an dem Verfahren - sich einen schnellen 
Überblick zu Verschaffen, bevor man das mühselig mit dem Rechenschieber 
nachprüft. Oder in der heutigen Zeit, um zu entscheiden, ob der Computer 
recht haben könnte.

Benutzer denen die manuelle Erstellung von Bode-Diagramme gefallen hat, 
malen auch gerne Wurzelortskurven...

https://en.wikipedia.org/wiki/Bode_plot
https://en.wikipedia.org/wiki/Nyquist_stability_criterion#Nyquist_plot
https://en.wikipedia.org/wiki/Nichols_plot

Autor: Helmut S. (helmuts)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
Muss es nicht w=1 sein und A=0 und 1/T2T3 ist der P-Anteil also
20log(1/T2T3)

Ich verstehe dein Problem nicht.

Die Konstruktionslinie in obiger Funktion beginnt bei dem Punkt

|F|dB = 20dB*log(1/(T2*T3)) +20dB*log(1/(w^2))

Für w bitte den kleinsten Wert deiner x-Achse eintragen.

Ab da geht es mit -40dB bergab bis zur ersten Grenzfrequenz wg1. Ab dort 
dann weiter mit -20dB/Dekade bis zur Grenzfrequenz wg4. Ab wg4 dann 
weiter mit -40dB/Dekade.

: Bearbeitet durch User
Autor: El Ef (Gast)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
Zeichnervomjahrhundert schrieb:
> 1/(T2T3s^2): Doppelter Integrator von links kommend mit -40db pro dekade
> durch w=1 und rechts weiter -40db pro dekade

1. Das ist kein w, sondern ein kleines omega oder meinst du mit w etwas 
anderes? s = sigma + j*omega

2. Wie kommst du auf die Idee, dass die Übertragungsfunktion durch omega 
= 1 gehen muss?

Zeichnervormjahrhundert schrieb:
> Dort wirken die Integratoren
> bzw Dämpfungsanteile stets bei w=1 was mir auch bewusst ist.

Ich denke du hast hier ein grundsätzliches Verständnisproblem.

Autor: Helmut S. (helmuts)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
In meiner vorherigen Beschreibung steht w für ω (omega).

Das w hat man halt direkt auf der Tastatur während man sich das ω erst 
besorgen muss.

Hier im letzten Beitrag (#6) von mir kannst du noch ein anderes Beispiel 
amschauen.

https://www.techniker-forum.de/thema/bodediagramm-funktionsgleichung-umformen.115450/

: Bearbeitet durch User
Autor: Zeichnervormjahrhuner (Gast)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
Dein Link sagt folgendes:

,,-20 dB/decade passing through 0 dB at ω=1" bzgl Integratorglied


Wieso geht jetzt aber die im Anhang genannte Gerade durch A=1 und 
w=1/(T2T3) ?

Wo liegt denn mein Denkfehler? Die Gesamtübertragungsfunktion folgt ja 
durch Überlagerung/Superposition

Autor: El Ef (Gast)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
Zeichnervormjahrhuner schrieb:
> Dein Link sagt folgendes:
>
> ,,-20 dB/decade passing through 0 dB at ω=1" bzgl Integratorglied
>
> Wieso geht jetzt aber die im Anhang genannte Gerade durch A=1 und
> w=1/(T2T3) ?
>
> Wo liegt denn mein Denkfehler? Die Gesamtübertragungsfunktion folgt ja
> durch Überlagerung/Superposition

Das normierte Integratorglied mit der Übertragugnsfunktion 1/s hat 0 dB 
bei omega = 1. Du hast hier eine Verschiebung der Linie durch den 
Koeffizienten..

Du kannst dir ganz einfach ausrechnen, bei welcher Frequenz du 0 dB 
schneidest.

0 dB sind im linearen der Faktor 1. Also Gleichung aufstellen, 
umstellen, fertig.

Normierter Integrator 1/s = 1 -> ω = 1

Beispeil 1/(T*s) = 1 -> s = 1/T -> ω = 1/T

Autor: Marcus H. (Firma: www.harerod.de) (lungfish) Benutzerseite
Datum:

Bewertung
0 lesenswert
nicht lesenswert
Zeichnervormjahrhuner schrieb:
...
> Wo liegt denn mein Denkfehler? Die Gesamtübertragungsfunktion folgt ja
> durch Überlagerung/Superposition

Das wäre so im Falle von Parallelschaltungen von LTI-Systemen.
Oder oft gesehen bei Kirchhoff Maschen-/Knotenregel.

Hier haben wir es mit einer Hintereinanderschaltung von LTI-Systemen zu 
tun, welche über ein Faltungsintegral dargestellt wird.

Für diese hier gezeigten altehrwürdigen Verfahren gilt der Grundgedanke:
Eine Faltung im Zeitbereich wird zur Multiplikation im Bildbereich.
Eine Multiplikation von Zahlen wird zur Addition derer Logarithmen.

: Bearbeitet durch User
Autor: El Ef (Gast)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
Marcus H. schrieb:
> Das wäre im Falle von Parallelschaltungen von LTI-Systemen.
> Oder oft gesehen bei Kirchhoff Maschen-/Knotenregel.
>
> Hier haben wir es mit einer Hintereinanderschaltung von LTI-Systemen zu
> tun, welche über ein Faltungsintegral dargestellt wird.

Bedenke hier werden Logarithmische Übertragungsfunktionen 
superpositioniert.

Im Frequenzbereich werden die Übertragungsfunktionen multipliziert. Wenn 
wir hier dann logarithmieren haben wir log(H1*H2) = log(H1)+log(H2)

der Ansatz stimmt also schon

Autor: Zeichnervormjahrhuner (Gast)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
Und wie komm ich darauf das der Betrag bei 1/T2T3  genau 1 ist?

Was wäre denn zb bei T/s oder s/T ?

Wenn jetzt T allgemein konstanten wären, wäre das ja wieder kein Problem 
da man 20logT bzw 20log1/T berechnen kann.

Würde das wieder ein Schnittpunkt durch 1/T bei einem Betrag von 1 sein 
?

Autor: Zeichnervormjahrhuner (Gast)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
,,Eine Multiplikation von Zahlen wird zur Addition derer Logarithmen."

gut zu wissen, danke!

Autor: El Ef (Gast)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
Zeichnervormjahrhuner schrieb:
> Und wie komm ich darauf das der Betrag bei 1/T2T3  genau 1 ist?

Von welcher Übertragungsfunktion? Wo soll das so sein?

bei dem Doppelten Integrator
1/(T2*T3*s^2) = 1 -> kommt man zu A = 1 für ω = 1/(sqrt(T2*T3))

Einfach durch umstellen nach ω.

Zeichnervormjahrhuner schrieb:
> Was wäre denn zb bei T/s oder s/T ?
>
> Wenn jetzt T allgemein konstanten wären, wäre das ja wieder kein Problem
> da man 20logT bzw 20log1/T berechnen kann.

Ich verstehe hier dein Problem wirklich nicht. Du kannst dir für deine 
Übertragungsfunktion ausrechnen bei welcher Frequenz du welche Amplitude 
hast.
Genau so bestimmt man auch die Eckfrequenzen von Hochpass oder Tiefpass.


in der Lösung ist auch nur schematisch gemalt ohne absolute Werte.
Mal ein Bild von deiner Lösung. Ich verstehe nicht wo dein Problem liegt

Autor: Zeichnervormjahrhuner (Gast)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
Wir sollen mit allgemeinen Zeitkonstanten rechnen, das ist das was mir 
Probleme bereitet (wie im oben genannte Anhang). Bodediagramme für 
explizit vorgegebene Zeitkonstanten stellt für mich kein Problem dar.

Und da man bei allgemeinen Zeitkonstanten kein Proportionalitätsanteil 
20log(T) berechnen kann hab ich ebend bisschen Probleme hiermit.

Du sagst also man kommt auf A=1 lediglich nur wenn man die Zeitkonstante 
umgestellt nach w in den Betra der Übertragungsfunktion einsetzt? Also 
mir ist das alles klar, aber ich frage mich ob man tatsächlich das so 
berechnet hat oder anders sieht das der Betrag für 1/T2T3 1 ergibt.

Autor: El Ef (Gast)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
Zeichnervormjahrhuner schrieb:
> Wir sollen mit allgemeinen Zeitkonstanten rechnen, das ist das was mir
> Probleme bereitet (wie im oben genannte Anhang). Bodediagramme für
> explizit vorgegebene Zeitkonstanten stellt für mich kein Problem dar.

Wenn das steht T1 hast du Probleme. Wenn da steht 0.5s hast du keine 
Probleme?

Zeichnervormjahrhuner schrieb:
> Und da man bei allgemeinen Zeitkonstanten kein Proportionalitätsanteil
> 20log(T) berechnen kann hab ich ebend bisschen Probleme hiermit.

Wozu willst du das hier machen?
0 dB sind immer der Faktor 1.

Zeichnervormjahrhuner schrieb:
> Du sagst also man kommt auf A=1 lediglich nur wenn man die Zeitkonstante
> umgestellt nach w in den Betra der Übertragungsfunktion einsetzt?

Ich verstehe deinen Satz nicht. Du setzt die Übertragungsfunktion = 1 
und stellst nach ω um. Dann weißt du bei welchem ω du 0 dB hast. Die 
Steigung weißt du auch. Du hast einen Punkt und die Steigung, kannst 
also die Linie malen.

Nehmen wir als Beispiel das PD1-Glied mit der Übertragungsfunktion
T1*s+1.
Für ω = 0 einsetzten und du siehst das du hier die Amplitude 1 hast. 
Jetzt bist du z.B. daran interessiert wo der +3dB (linear Faktor 2) 
Punkt liegt.
Da setzt deine Übertragungsfunktion T1*s+1 = 2
Stellst nach ω um und erhälst für den Eckpunkt ω = 1/T1 und weißt, dass 
ab hier asymptotisch +20 dB pro Dekade sind

oder dein PT1-Glied mit der Übertragungsfunktion 1/(T4*s+1). Hier bist 
du an dem -3 dB punkt interessiert. Also Übertragungsfunktion 1/(T4*s+1) 
= 1/2 und nach ω auflösen. Du erhälst ω = 1/T4 und weißt ab hier 
asymptotisch -20 dB pro Dekade.

Autor: Marcus H. (Firma: www.harerod.de) (lungfish) Benutzerseite
Datum:

Bewertung
0 lesenswert
nicht lesenswert
Zeichnervormjahrhuner schrieb:
> ,,Eine Multiplikation von Zahlen wird zur Addition derer Logarithmen."
>
> gut zu wissen, danke!

Wir hatten damals in den ersten zwei Semestern E-Technik einen Lehrer 
von der benachbarten Schule. Der hat uns Nachhilfe gegeben, um sicher zu 
stellen, dass der Schulstoff sitzt, bevor es richtig zur Sache ging.
Und das war bitter notwendig.

Ich hab mich so weit aus dem Fenster gelehnt, weil ich mir gerade nicht 
sicher bin, wo man hier einsteigen muss.

Das was Du hier grad so fragst ist eher 3. Semester aufwärts - 
Signal-und Systemtheorie oder Regelungstechnik. Oder natürlich 
Schaltungsanalyse/-Synthese. Grundlegendes Handwerkszeug, das zumindest 
bei mir auch heute noch regelmäßig zum Einsatz kommt. Danach folgt die 
Simulation. Dann der Testaufbau.

Mach mal kurz Pause, geh in die Bibliothek und hol Dir den Unbehauen 
oder schau in Deinem Lehrbuch nach. Oder sag hier Deinen Standort, 
vielleicht mag sich jemand mit Dir zusammen hinsetzen.

Autor: Helmut S. (helmuts)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
Hallo,
um das Bodediagramm zu zeichnen hat man ja normalerweise richtige Zahlen 
auf der x-Achse, z. B. w=0,01 bis w=100. Die Zeitkonstanten T1 bis T4 
haben doch bestimmt auch Zahlenwerte. Wie sehen die Werte aus und in 
welchem Bereich ist x-Achse?
Mit der Info kann man dann ein Beispiel machen oder soll das Ganze nur 
ein prinzipielles Bode-Diagramm werden ohne konkrete Zahlenwerte?

: Bearbeitet durch User
Autor: Marcus H. (Firma: www.harerod.de) (lungfish) Benutzerseite
Datum:

Bewertung
0 lesenswert
nicht lesenswert
Helmut S. schrieb:
> Hallo,
> um das Bodediagramm zu zeichnen hat man ja normalerweise richtige Zahlen
> auf der x-Achse, z. B. w=0,01 bis w=100. Die Zeitkonstanten T1 bis T4
> haben doch bestimmt auch Zahlenwerte. Wie sehen die Werte aus und in
> welchem Bereich ist x-Achse?
> Mit der Info kann man dann ein Beispiel machen oder soll das Ganze nur
> ein prinzipielles Bode-Diagramm werden ohne konkrete Zahlenwerte?

Du wirfst da einen interessanten Punkt auf. Wenn nicht im Eingangspost
"T1>T2>T3>T4" gestanden hätte, hätte ich auf die Frage maximal mit 
"insufficient data" reagiert. Aber so kann man die Skizze ganz gut zur 
Abschätzung von Arbeitsbereichen verwenden. So man denn abstrahieren 
kann, dass sich z.B. Abszisse und Ordinate nicht in 0/0 schneiden. 
Ersteres geht sowieso nicht und zweiteres ist reine Skalierung.

Autor: Michel M. (elec-deniel)
Datum:

Bewertung
0 lesenswert
nicht lesenswert

Autor: Marcus H. (Firma: www.harerod.de) (lungfish) Benutzerseite
Datum:

Bewertung
0 lesenswert
nicht lesenswert
Im Nachhinein bin ich fast davon überzeugt, dass nicht die 
Konstruktionsanleitungen selbst, sondern die ungewohnten Eigenschaften 
von doppellogarithmischen Graphen den TO irritiert haben.
Gleichzeitig ist die Abszisseneinheit 1/s, die Ordinateneinheit des 
Verstärkungsbetrags ein Skalar.

Die 0dB auf der Ordinatenachse (Hochachse) entsprechen einer 1.
Die Asymptote des jeweiligen Teilproduktes der 
Gesamtübertragungsfunktion schneidet daher die Abszissenachse 
(horizontale Achse), wenn dieses Teilprodukt gleich 1 ist.

Im Falle einer Integrator-Polstelle 1/(T*p) muss daher für 0dB p = 2*π*f 
= 1/T sein.

Bei der hier untersuchten Serienschaltung von Polstellen werden deren 
Laplaceübertragungsfunktionen multipliziert (entspricht Faltung im 
Zeitbereich) - und dann im Diagramm deren Logarithmen addiert. Für einen 
0dB Durchgang der Verstärkung müssen daher beide 
Integrator-Übertragungsfunktionen 1 d.h. 0dB sein.

Einmaleinsisteins - ich denke da war der Knackpunkt, weil sich durch die 
Bedingung, dass zwei Verstärkungen 1 sein müssen, der irritierende Punkt 
(1/T1) * (1/T2) = 1/(T1*T2) ergibt.

Falls ich mich irren sollte, sorry. Aber vielleicht hat der eine oder 
andere aus diesem Thread eine kleine Wiederholung zum Thema 
mathematisches Handwerkzeug mitgenommen.

Autor: Zeichnervormjahrhundett (Gast)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
Dann ist die betragsachse gar nicjt in db aufgetragen? Das war ja mein 
Problem dachte die ganze zeit es seien 1dB

Autor: Marcus H. (Firma: www.harerod.de) (lungfish) Benutzerseite
Datum:

Bewertung
0 lesenswert
nicht lesenswert
Doppellogarithmisches Achsensystem:
Hochachse in dB
Rechtsachse in log(Omega/Laplaceoperator/ oder Frequenz). Üblich ist 
Winkelgeschwindigkeit in der Regelungstechnik, Frequenz in der 
Elektronik.

Schnittpunkt der Achsen: Hochachse 0dB = Faktor 1 auf Bezugsgröße, 
Rechtsachse, tja, frei wählbar, anwendungsbezogen.


dB drückt ein Verhältnis aus.
Da das Verhältnis logarithmisch angegeben wird, wird Punkt zu 
Strichrechnung.

log_ZuIrgendEinerBasis(0) = 1

Was also nicht geht: keine der angegebenen Werte können zu Null werden.
Das ist der Unterschied zum linearen Achsensystem.

Als Übung könnten man mal versuchen, die Werte der Bodediagramme in 
halb-logarithmische oder lineare Achsensysteme zu übertragen. Auch diese 
haben ihre Bedeutung. Wenn man das mal gemacht hat, kann man die 
Vorteile der jeweiligen Darstellungsform abschätzen.


https://de.wikipedia.org/wiki/Bel_(Einheit)
https://de.wikipedia.org/wiki/Logarithmische_Gr%C3%B6%C3%9Fe

Es ist keine Schande und zumindest mir ging es so, dass ich im Zuge der 
Anwendungen nochmal mein Grundlagenwissen überprüft habe. Das Tolle am 
Studium war, dass ich spätestens im 5. Semester wusste, wofür die 
Mathevorlesung gut war. Diese Befriedigung bliebt einem Schüler leider 
verwehrt. Nach dem Abi wissen die wenigsten, warum sie binomische 
Formeln, Triginometrie etc. lernen mussten.

Ich bin ein großer Freund von Grundlagenverständnis. Deswegen gehen bei 
mir Kundenschulungen immer mit ein paar Checkfragen in Richtung 
SI-System, Mathe, etc. los. Damit ich mein Publikum einschätzen kann. 
Ich brauche nicht über Kennlinien von 
Operationsverstärkerinnenschaltungen reden, wenn das Thema e-Funktion 
nicht vorhanden ist.
Oder bei einem EMV Test über Grenzwerte, z.B. warum 30dBµV schon eine 
andere Ansage als 50dBµV sind.

Bonusfrage, weil Freitag ist:
Was haben die Namensgebungen der Einheiten Bel, Volt, Farad gemeinsam?

Autor: au (Gast)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
Zeichnervormjahrhundett schrieb:
> Dann ist die betragsachse gar nicjt in db aufgetragen? Das war ja mein
> Problem dachte die ganze zeit es seien 1dB

dich stört die kleine 1 neben der Zeichnung? Die ist in der Tat falsch.
Es ist logarithmsich aufgetragen, sonst hättest du keine geraden.

Antwort schreiben

Die Angabe einer E-Mail-Adresse ist freiwillig. Wenn Sie automatisch per E-Mail über Antworten auf Ihren Beitrag informiert werden möchten, melden Sie sich bitte an.

Wichtige Regeln - erst lesen, dann posten!

  • Groß- und Kleinschreibung verwenden
  • Längeren Sourcecode nicht im Text einfügen, sondern als Dateianhang

Formatierung (mehr Informationen...)

  • [c]C-Code[/c]
  • [avrasm]AVR-Assembler-Code[/avrasm]
  • [code]Code in anderen Sprachen, ASCII-Zeichnungen[/code]
  • [math]Formel in LaTeX-Syntax[/math]
  • [[Titel]] - Link zu Artikel
  • Verweis auf anderen Beitrag einfügen: Rechtsklick auf Beitragstitel,
    "Adresse kopieren", und in den Text einfügen




Bild automatisch verkleinern, falls nötig
Bitte das JPG-Format nur für Fotos und Scans verwenden!
Zeichnungen und Screenshots im PNG- oder
GIF-Format hochladen. Siehe Bildformate.

Mit dem Abschicken bestätigst du, die Nutzungsbedingungen anzuerkennen.