mikrocontroller.net

Forum: HF, Funk und Felder Fourier Koeffizienten eines periodischen Signals bestimmen


Announcement: there is an English version of this forum on EmbDev.net. Posts you create there will be displayed on Mikrocontroller.net and EmbDev.net.
von Michael (Gast)


Angehängte Dateien:

Bewertung
0 lesenswert
nicht lesenswert
Gegeben ist die Signalform aus dem 1. Bild. Nun sollen die 
Fourier-Koeffizienten ermittelt werden. Soweit so gut meine Lösung ist 
im 2. Bild ersichtlich.
Nun habe ich dies im TR zeichnen lassen und bekomme so gar nicht was ich 
sollte, was auch im 3. Bild zu sehen ist.
Kann mir jemand bestätigen, das mein Resultat stimmt bzw. hat eine Idee 
wo der Fehler liegen könnte?

Gruss

Michael

von Markus (Gast)


Bewertung
0 lesenswert
nicht lesenswert
Um Deine Lösung nachvollziehen zu können, lade Deinen Lösungsweg hoch.

von Abyssaler Einspeiser (Gast)


Bewertung
0 lesenswert
nicht lesenswert
Einfache Ueberlegung:

Ein cos(omega t) - cos(3 omega t) hat keine Spitzen wie dein Plot.
Ueberpruefe mal was der arme Kerl da plotten sollte...

von ~Mercedes~ (Gast)


Bewertung
0 lesenswert
nicht lesenswert
Interessant...

Da clippt irgendetwas, sollte ne Recheckschwingung
nicht aus harmonisch zueinanderliegenden Sinus-
scwingungen bestehen?


mfg

von Yalu X. (yalu) (Moderator)


Bewertung
0 lesenswert
nicht lesenswert
Von wo bis wo im Diagramm soll denn überhaupt die Periode gehen?

von Mario H. (rf-messkopf) Benutzerseite


Bewertung
0 lesenswert
nicht lesenswert
Michael schrieb:
> Gegeben ist die Signalform aus dem 1. Bild.

Das Problem fängt schon damit an, dass durch das Bild die gegebene 
Funktion nicht eindeutig definiert ist. Für eine Fourier-Reihe benötigt 
es ein Intervall [a,b] und eine Funktion
Die Fourier-Koeffizienten sind dann
Solange nicht Klarheit über a, b und f besteht, kann man die 
Fourier-Koeffizienten auch nicht explizit berechnen.

: Bearbeitet durch User
von Michael (Gast)


Angehängte Dateien:

Bewertung
0 lesenswert
nicht lesenswert
Anbei mein Lösungsweg.

von Michael (Gast)


Bewertung
0 lesenswert
nicht lesenswert
Von 0-T

von Michael (Gast)


Bewertung
0 lesenswert
nicht lesenswert
Yalu X. schrieb:
> Von wo bis wo im Diagramm soll denn überhaupt die Periode gehen?

Von 0-T

von Mario H. (rf-messkopf) Benutzerseite


Bewertung
0 lesenswert
nicht lesenswert
Michael schrieb:
> Yalu X. schrieb:
>> Von wo bis wo im Diagramm soll denn überhaupt die Periode gehen?
>
> Von 0-T

Die Funktion ist aber nur von 0 bis T/2 aufgemalt, wenn man davon 
ausgeht, dass bei dem Strich Null ist. Den Koeffizienten a_k rechnest Du 
auch nur über das Intervall [0,T/2]. Und zu der Symmetrie und dem daraus 
gezogenen Schluss b_k = 0 würde ich mir auch nochmal Gedanken machen.

Es besteht nach wie vor keine Eindeutigkeit über die Funktion und ihren 
Definitionsbereich.

von ~Mercedes~ (Gast)


Bewertung
0 lesenswert
nicht lesenswert
muß er nun die Länge des Eingangssignals veeroppeln?

mfg

von Michael (Gast)


Bewertung
0 lesenswert
nicht lesenswert
Mario H. schrieb:
> Die Funktion ist aber nur von 0 bis T/2 aufgemalt, wenn man davon
> ausgeht, dass bei dem Strich Null ist. Den Koeffizienten a_k rechnest Du
> auch nur über das Intervall [0,T/2].

Das Signal ist Periodisch uns somit Symmetrisch, in diesem Fall 
gespiegelt an der Ordinate. Daraus ergibt sich [T/2,T].

Daher können auch anhand der Hälfte des Signals die 
Fourier-Koeffizienten bestimmt werden.

Mario H. schrieb:
> Und zu der Symmetrie und dem daraus
> gezogenen Schluss b_k = 0 würde ich mir auch nochmal Gedanken machen.

Periodische Signale sind immer Symmetrisch.
Bei einer Geraden Funktion wie in diesem Fall ist B_K immer = 0.

von Mario H. (rf-messkopf) Benutzerseite


Bewertung
0 lesenswert
nicht lesenswert
Michael schrieb:
> Das Signal ist Periodisch uns somit Symmetrisch

Ein periodisches Signal muss bzgl. des Ursprungs oder der Ordinate i.a. 
keine Symmetrie haben.

> in diesem Fall gespiegelt an der Ordinate

Also scheinst Du Dein Signal f auf [0,T/2] durch das Bild definieren zu 
wollen und dann auf [-T/2,0[ vermöge f(x)=f(-x) für x aus [-T/2,0[ 
fortzusetzen. D.h. die Funktion wird insgesamt auf dem Intervall 
[-T/2,T/2] betrachtet und die Periodenlänge ist T. Das geht aus dem 
vorher gesagten nicht hervor.

> Periodische Signale sind immer Symmetrisch.

Siehe oben. Das ist i.a. falsch.

von Michael (Gast)


Bewertung
0 lesenswert
nicht lesenswert
Mario H. schrieb:
> Ein periodisches Signal muss bzgl. des Ursprungs oder der Ordinate i.a.
> keine Symmetrie haben.

Bei einem nicht gedämpften periodischen Signal kann meiner Meinung nach 
davon ausgegangen werden, dass der Signalverlauf vor und nach der 
betrachteten Periode gleich ist und somit kann durchaus von Symmetrie 
gesprochen werden. Wo auch immer die Symmetrieachse liegt.

Mario H. schrieb:
> Also scheinst Du Dein Signal f auf [0,T/2] durch das Bild definieren zu
> wollen und dann auf [-T/2,0[ vermöge f(x)=f(-x) für x aus [-T/2,0[
> fortzusetzen. D.h. die Funktion wird insgesamt auf dem Intervall
> [-T/2,T/2] betrachtet und die Periodenlänge ist T. Das geht aus dem
> vorher gesagten nicht hervor.

Das sollte aus dem Bild hervorgehen.

Ich möchte hier aber nicht von Definitionen der Symmetrie oder 
Periodizität sprechen sonder würde gerne Wissen wo mein Fehler liegt.

Ist jemand hier im Stande diese Koeffizienten zu berechnen um mein 
Lösungsweg zu prüfen oder kann meine Koeffizienten mal plotten?

von Markus (Gast)


Bewertung
0 lesenswert
nicht lesenswert
Wie berechnet man soetwas bei Wolfram-Alpha?

ExptoTrig[FourierSeries[Piecewise[{{0,0<x<T/8},{U,T/8<x<T/4},{-U,T/4<x<3 
T/8},{0,3T/8<x<T/2},{0,T/2<x<5T/8},{U,5T/8<3T/4},{-U,3T/4<7T/8},{0,7T/8< 
x<T}}],x,5]]

funktioniert nicht

von Helmut S. (helmuts)


Angehängte Dateien:

Bewertung
0 lesenswert
nicht lesenswert
Ich habe mal deine Ergebnisse genauer angeschaut.

Auf der 1. Seite muss in der untersten Formel
a) der Vorfaktor 2 und nicht 4/pi sein.
b) der letzte Term -sin(kwT/4) muss ein + Vorzeichen haben - Tippfehler.

Dein Versuch die Formel für die Koeffizientene auf der 2. Seite zu 
vereinfachen ging irgendwie daneben. Das kann jedem mal passieren.

Im Anhang die Simulation.


Koeffizienten der Fourierreihe: blaue Kurve im Plot
Die lila-Kurve zeigt die Periode zentriert um die Zeit 1.

ak=2*(2*sin(k*pi/2)-sin(k*pi/4)-sin(k*3/4*pi))


Die rote Kurve ist die mit dem Fehler von Seite 2 deiner Berechnung.

Im Anhang die Dateien für LTspiceXVII.

: Bearbeitet durch User
von Michael (Gast)


Bewertung
0 lesenswert
nicht lesenswert
Perfekt vielen Dank.
Jetzt ist es auch bei mir ein Rechteck.

von Mario H. (rf-messkopf) Benutzerseite


Bewertung
0 lesenswert
nicht lesenswert
Michael schrieb:
> kann durchaus von Symmetrie
> gesprochen werden. Wo auch immer die Symmetrieachse liegt.

Für das Verschwinden der Fourier-Koeffizienten kommt es aber nicht auf 
die Symmetrie bzgl. irgendeiner Achse bzw. irgendeines Punktes an, 
sondern eines ganz bestimmten. Und die liegt i.a. nicht vor.

> Das sollte aus dem Bild hervorgehen.

Na ja...

> Ist jemand hier im Stande diese Koeffizienten zu berechnen

Nachdem nun das Signal bekannt ist: In der Tat ist b_k = 0 für alle k. 
Ebenso ist offensichtlich a_0 = 0. Für die a_k kann ich Deine Rechnung 
bis zum Ergebnis
und a_k = 0 für k gerade nachvollziehen. Die Probe von Helmut, dass das 
die richtige Reihenentwicklung für die Funktion liefert, bestätigt das 
auch.

Helmut S. schrieb:
> a) der Vorfaktor 2 und nicht 4/pi sein.

Welcher? soweit ich sehe ist auf der ersten Seite alles richtig.

> b) der letzte Term -sin(kwT/4) muss ein + Vorzeichen haben - Tippfehler.

Sollte m.E. auch richtig sein, und liefert das von Dir bestätigte 
Ergebnis.

: Bearbeitet durch User
von Helmut S. (helmuts)


Bewertung
0 lesenswert
nicht lesenswert
Mario H. schrieb:

>> b) der letzte Term -sin(kwT/4) muss ein + Vorzeichen haben - Tippfehler.
>
> Sollte m.E. auch richtig sein, und liefert das von Dir bestätigte
> Ergebnis.

Du hast nicht richtig hingeschaut. Mit dem -Vorzeichen würde ein Term 
wegfallen und damit wäre es falsch.

: Bearbeitet durch User
von Wolfgang (Gast)


Bewertung
0 lesenswert
nicht lesenswert
Michael schrieb:
> Kann mir jemand bestätigen, das mein Resultat stimmt bzw. hat eine Idee
> wo der Fehler liegen könnte?

Woher weißt du, dass es sich um ein periodisch Signal handelt und welche 
Periode das Signal hat. Die dargestellte f(t) lässt keine Periodizität 
erkennen. Wie sollte der Übergang zur nächsten Periode aussehen?

von Michael (Gast)


Bewertung
0 lesenswert
nicht lesenswert
Helmut S. schrieb:
> Mario H. schrieb:
>
>>> b) der letzte Term -sin(kwT/4) muss ein + Vorzeichen haben - Tippfehler.
>>
>> Sollte m.E. auch richtig sein, und liefert das von Dir bestätigte
>> Ergebnis.
>
> Du hast nicht richtig hingeschaut. Mit dem -Vorzeichen würde ein Term
> wegfallen und damit wäre es falsch.

Klammern beachten. Dieser Teil sollte so stimmen.
Die Klammer wird auf der 2. Seite aufgelöst und dabei wechselt das 
Vorzeichen.

von Genau? (Gast)


Bewertung
0 lesenswert
nicht lesenswert
Und jetzt zeige uns bitte die Summendunktion der Reihe und Vergleiche 
mit der Originalfunktion. Wo ist der Unterschied?

von Michael (Gast)


Bewertung
0 lesenswert
nicht lesenswert
Wolfgang schrieb:
> Michael schrieb:
>> Kann mir jemand bestätigen, das mein Resultat stimmt bzw. hat eine Idee
>> wo der Fehler liegen könnte?
>
> Woher weißt du, dass es sich um ein periodisch Signal handelt und welche
> Periode das Signal hat. Die dargestellte f(t) lässt keine Periodizität
> erkennen. Wie sollte der Übergang zur nächsten Periode aussehen?

In dieser Aufgabenserie geht es explizit um periodische Signale.

von Michael (Gast)


Bewertung
0 lesenswert
nicht lesenswert
Wolfgang schrieb:
> Wie sollte der Übergang zur nächsten Periode aussehen?

Im LTSpiceplott von Helmut kannst du zwei volle Perioden sehen.

von Wolfgang (Gast)


Bewertung
0 lesenswert
nicht lesenswert
Michael schrieb:
> In dieser Aufgabenserie geht es explizit um periodische Signale.

Dann sollte f(x) auch so aussehen.
Selbst bei großzügiger Interpretation des gezeigten Funktionsverlaufs 
ist der Bereich von 0.53T bis 0.75T undefiniert, sofern man eine 
Periodendauer T annimmt.

Michael schrieb:
> Beispiel_5_Kapitel_7.PNG

von Helmut S. (helmuts)


Angehängte Dateien:

Bewertung
0 lesenswert
nicht lesenswert
Nach der 2. Antwort von Michael konnte man dann in seiner angehängten 
Berechnung sehen, dass es um eine gerade Funktion geht.
f(-t) = f(t)

Siehe die rote Funktion im Anhang.

: Bearbeitet durch User
von Genau? (Gast)


Bewertung
0 lesenswert
nicht lesenswert
Ich erkenne keinerlei Aehnlichkeit....

von Helmut S. (helmuts)


Angehängte Dateien:

Bewertung
0 lesenswert
nicht lesenswert
Genau? schrieb:
> Ich erkenne keinerlei Aehnlichkeit....

Danke für den Hinweis. Da ist mir beim Plot ein Fehler unterlaufen.

: Bearbeitet durch User
von Michel M. (elec-deniel)


Bewertung
0 lesenswert
nicht lesenswert

: Bearbeitet durch User
von Michel M. (elec-deniel)


Bewertung
0 lesenswert
nicht lesenswert
... Scilab sollte so funktioniern ..... aber der plotbefehl geht nicht 
:-(
http://www.matrixlab-examples.com/scilab-piecewise-function.html

Antwort schreiben

Die Angabe einer E-Mail-Adresse ist freiwillig. Wenn Sie automatisch per E-Mail über Antworten auf Ihren Beitrag informiert werden möchten, melden Sie sich bitte an.

Wichtige Regeln - erst lesen, dann posten!

  • Groß- und Kleinschreibung verwenden
  • Längeren Sourcecode nicht im Text einfügen, sondern als Dateianhang

Formatierung (mehr Informationen...)

  • [c]C-Code[/c]
  • [avrasm]AVR-Assembler-Code[/avrasm]
  • [code]Code in anderen Sprachen, ASCII-Zeichnungen[/code]
  • [math]Formel in LaTeX-Syntax[/math]
  • [[Titel]] - Link zu Artikel
  • Verweis auf anderen Beitrag einfügen: Rechtsklick auf Beitragstitel,
    "Adresse kopieren", und in den Text einfügen




Bild automatisch verkleinern, falls nötig
Bitte das JPG-Format nur für Fotos und Scans verwenden!
Zeichnungen und Screenshots im PNG- oder
GIF-Format hochladen. Siehe Bildformate.

Mit dem Abschicken bestätigst du, die Nutzungsbedingungen anzuerkennen.