www.mikrocontroller.net

Forum: HF, Funk und Felder mag. Feldenergie eines geraden Stromleiters unendlich?


Autor: daniel (Gast)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
Das dürfte doch nicht sein!?

Wenn ich die Formel W=w*V = 0.5*u0*ur*H^2*V verwende,
dann kommt aber unendlich heraus.

Ich benutze sinnvollerweise Zylinderkooridinaten.
dV = R*dphi*dz*dR
H = I/(2*pi*R)

=> nach H^2 steht R^2 im Nenner, wird aber mit einem R
im dV gekürzt. Es bleibt ein R im Nenner ... also
ln(R). Die Grenzen für die Integration über R gehen aber
von R0 (Leiterradius) bis unendlich.

ln(unendlich)-ln(R) => unendlich

irgendwo liegt doch ein Problem vor

grüsse, daniel

Autor: drpepper (Gast)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
H = I/(2*pi*R) für R=0 ist endlich

Autor: daniel (Gast)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
je näher Du am Leiter bzw seiner Oberfläche bist,
desto stärker ist dort das Feld! Du teilst ja durch R,
und R wird immer kleiner => H(nur phi Komponente ist vorhanden)
geht somit gegen unendlich dabei.

Um dieses Problem zu umgehen, integriert man R nicht von 0 los,
sondern von der R0. Das macht auch Sinn, weil der Leiterradius
grösser als 0 ist.

Wie gesagt, mein Problem ist, dass in jeder beliebig kleiner
Scheibe in z-Richtung, die Feldenergie unendlich ist.

Grüsse, daniel

Autor: Nixwisser (Gast)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
Macht doch nix. Die Feldstärke H geht genauso gegen unendlich, wie die 
angenommene Ausdehnung der Scheibe gegen Null.

Durchflutungssatz: Linienintegral ( H mal ds ) = N mal I

natürlich vektoriell gerechnet, mit:

H       = Feldstärke,
ds      = Linienelement,
N mal I = Strom I mit Windungszahl N

Mache ich die Linie "unendlich" kurz, geht auch der Querschnitt des
( bzw. der ) Leiter(s) gegen 0.

Die magnetische Energie W in einem Raum erhalte ich durch das 
Volumenintegral

W = 0,5 mal Integral ( B mal H mal dV )  mit:

B  = Flussdichte ( Vektor !)
H  = Feldstärke ( Vektor !)
dV = Volumenelement

Also: endliche magnetische Energie in einem Volumen von 0 geht nicht !

( Ohne Gewähr. )

Gruss

Autor: daniel (Gast)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
>Die Feldstärke H geht genauso gegen unendlich, wie die
>angenommene Ausdehnung der Scheibe gegen Null.

meinst Du mit "Ausdehnung der Scheibe" die Ausdehnung in
Richtung des R-Vektors oder des z-Vektors?

ich meinte mit der Ausdehnung die z-Richtung.
also dünne Scheibe (dz ist klein und fest) mit einer unendlichen
Ausdehnung in R-Richtung (=>Volument auch unendlich)
H fällt mit 1/R dabei in R-Richtung ab.
W = w*V = ... bringt etwas unbegrenztes heraus.

dV = R*dphi*dR*dz
dW = w*dV = 0.5*u0*uR*H^2*dV = 0.5*u0*uR*(I/(2piR))^2*R*dphi*dR*dz

dW/dz = .. (Energie einer dünnen unendlich ausgegdehnen Scheibe) = ..
0.5*u0*uR*I^2/(2*pi)^2*2*pi * integral 1/R dR (von R0 bis unendlich)

der Integral 1/R dR = ln(R)

ln(unendlich) = unendlich

mit anderen Worten .. die Feldenergie einer dünnen
unendlich ausgedehnten Scheibe (ausserhalb des Leiters)
ist unendlich!

wie kann das sein?

Autor: Vorname Nachname (logout-name)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
Das Problem liegt darin, dass das gar nicht geht ;)

Irgendwo (und noch vor dem unendlichen) muss auch wieder ein Rückleiter 
sein... Das ändert dann auch die Rechnung und führt auf ein gescheites 
Resultat

Autor: mandrake (Gast)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
Eine theoretische Überlegung (kann aber auch falsch überlegt sein):

Vielleicht kann man über den Poynting-Vektor argumentieren.
Wenn deine Scheibe die Höhe Null besitzt ist auch der Poynting-Vektor in 
ihr Null, was bedeutet, dass der Energietransport auch Null ist.
Könnte man nun ferner behaupten, dass alle Energie nur noch gespeichert 
und nicht mehr transportiert wird? Und das deswegen die Energie 
unendlich wird?

Man könnte aber auch mal eine ganz andere Betrachtung machen:
Nehmen wir an wir befinden uns im unendlichen Abstand von deinem Leiter 
und könnten dort noch eine magnetische Feldstärke messen. Erscheint es 
da nicht logisch, dass in Anbetracht des Abklingverhaltens der magn. 
Feldstärke (1/R)
die in das Feld gesteckte Energie undendlich sein muss um überhaupt noch 
eine Feldstärke im Abstand unendlichen zu erzeugen?

Gruß

Mandrake

Autor: Nixwisser (Gast)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
Vielleicht hilft eine einfache, pragmatische, analoge Betrachtung:

Angenommen, es sei ein System mit irgendeiner innerer Energie gegeben.

Welche Leistung ist nötig, um diese Energie um einen genau 
spezifizierten Betrag W zu erhöhen ?

W = Integral ( P mal delta t )

Ich brauche also IMMER eine ENDLICHE, d.h. von Null verschiedene Zeit, 
um mittels irgendeiner praktikablen Leistung P diese Energieerhöhung zu 
bewerkstelligen.

"Unendliche" Leistung kann man nun mal nicht bereitstellen.

Grenzwertbetrachtungen in der Form "Null mal unendlich" bleiben 
zumindest an diesen Stellen der Praxis rein philosophisch und daher 
bedeutungslos !

Gruss

Autor: Alex X. (dread)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
Der Leiter hat immer einen Radius der größer ist wie Null. Die Formel H 
= I/(2*pi*R) gilt nur für den Außenbereich. Im Inneren des Leiters 
steigt das Feld (bei Gleichstrom) linear von Null bis zum Maximalwert 
H=I/(2*pi*a) an, wenn a der Radius der Leiters ist.

Man hat also zwei getrennte Bereiche:
innen: H(r) = (I*r)/(2*pi*a*a)
außen: H(r) =     I/(2*pi*r)

In jedem der beiden Bereiche ist die gespeicherte Energie endlich. 
Innerhalb des Leiters ist sie sogar unabhängig vom Leiterradius a. Wenn 
ich mich nicht auf die Schnelle verrechnet habe: E=(I^2*l)/(16*pi). Also 
bleibt auch die Energie endlich, wenn der Leiterradius gegen unendlich 
geht.

Ein Leiter mit dem Radius a=0 macht physikalisch keinen Sinn.

Autor: daniel (Gast)
Datum:

Bewertung
0 lesenswert
nicht lesenswert

Autor: daniel (Gast)
Datum:
Angehängte Dateien:

Bewertung
0 lesenswert
nicht lesenswert
hat leider mit dem direkten Einbinden vom Latexcode nicht
geklappt, deswegen habe ich ein Bild davon gemacht.

@ Alex P

ich stimme Dir in allen Punkten bis auf mein Problem mit
der Energie ausserhalb des Leiters.
In Deiner Formel für die Energie innerhalb des Leiters
E=(I^2*l)/(16*pi) fehlt noch u0*ur Faktor.

@ Nixwisser

>Ich brauche also IMMER eine ENDLICHE, d.h. von Null verschiedene Zeit,
>um mittels irgendeiner praktikablen Leistung P diese Energieerhöhung zu
>bewerkstelligen.

das stimmt schon. Nur ist die Energie an sich und ihre Änderung
in der Zeit zwei (technisch und mathematisch gesehen) verschiedene
Grössen.

>"Unendliche" Leistung kann man nun mal nicht bereitstellen.

kein Thema :)

>Grenzwertbetrachtungen in der Form "Null mal unendlich" bleiben
>zumindest an diesen Stellen der Praxis rein philosophisch und daher
>bedeutungslos !

naja, in dem obigen Problem gibt es nur einen Term der gegen
unendlich geht. Gäbe es einen zweiten, der gleichzeitig
gegen Null geht, dann müsste man genauer untersuchen was passiert.
Aber im oberen Integral steht ln(R) von R0 bis unendlich,
da wird nichts 0.

grüsse, Daniel

Autor: Wolf (Gast)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
Mann, Daniel,
was machst Du mit so vielen Fraktalen?
Das untendrunter sieht schon verständlicher aus.

Autor: Nixwisser (Gast)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
Hallo, daniel;

Mein

"Ich brauche also IMMER eine ENDLICHE, d.h. von Null verschiedene Zeit,
>um mittels irgendeiner praktikablen Leistung P diese Energieerhöhung zu
>bewerkstelligen."

brachte ich nur als Beispiel.



In meiner Matheformelsammlung steht:

Integral von 1 bis ∞ von dx/x^n hat nur einen Grenzwert für n > 1,
für n=1 ist es nicht definiert.

Hier haben wir als Integrand 1/R, ergo n=1.

Wär's demnach doch ein Problem der Art "0 mal ∞" ?

Gruss

Autor: daniel (Gast)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
nein, es ist einfach so, dass die Fläche unter der  Hyberbel
1/R unendlich ist. Wohingegen eine stärker zur x Achse gedrückte 
Hyperbel
1/R^2 endliche Fläche hat. Zusätzlich sollte man sagen, dass
in beiden Fällen nicht die Fläche ab x=0 betrachtet wird, sondern
ab x=x0, da sonst auch im zweiten Fall unendliche Fläche herauskommt.

Ich meine, dass man die Integrale beiseite lassen kann und ein
Analogon mit den unendlichen Summen benutzen kann.
Summe von 1 bis unendlich über 1/k = .. unendlich
Summe von 1 bis unendlich über 1/k^2 = .. sollte endlich sein

in beiden Fällen ergibt sich unendliche Anzahl an positiven
Summanden, aber das Ergebnis kann durchaus endlich sein.

grüsse, daniel

Autor: Alex X. (dread)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
daniel wrote:
> In Deiner Formel für die Energie innerhalb des Leiters
> E=(I^2*l)/(16*pi) fehlt noch u0*ur Faktor.

Stimmt, den Faktor habe ich vergessen.

daniel wrote:
>Aber im oberen Integral steht ln(R) von R0 bis unendlich,
>da wird nichts 0

Jetzt habe ich glaub ich das Problem verstanden.
Das Problem liegt daran, dass es keinen Rückleiter gibt und die Leitung 
sich erst im Unendlichen wieder schließt.

Wenn man jetzt zum Beispiel eine Doppelleitung betrachtet, also 2 Leiter 
mit dem Radius a, die sich parallel im Abstand d gegenüberstehen, dann 
besitzt diese Anordnung eine äußere Induktivität von
L=(µ0*l)*ln[d/a]/(2*pi)
Die darin gespeicherte Energie ist
W=0.5*L*I^2=(I^2)*(µ0*l)*ln[d/a]/(4*pi)

Wenn also der Abstand der beiden Leiter gegen unendlich geht, dann haben 
wir wieder den Einzelleiter und dann geht auch die Induktivität und 
damit die gespeicherte Energie gegen unendlich.
Stationärer Fall natürlich vorausgesetzt, also das System wurde schon 
vor unendlich langer Zeit eingeschaltet. Und da das system schon 
unendlich lange läuft, kann auch eine unendliche Energie gespeichert 
sein.

Autor: Vorname Nachname (logout-name)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
Alex P. wrote:
> Jetzt habe ich glaub ich das Problem verstanden.
> Das Problem liegt daran, dass es keinen Rückleiter gibt und die Leitung
> sich erst im Unendlichen wieder schließt.

Das ging aber schnell!

Autor: daniel (Gast)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
@Alex P

Danke für's Mitrechnen!
Es ist wirklich sehr hilfreich wenn jemand ein Ergebnis
bestätigt oder den oder die :) Fehler findet.

@Vorname Nachname

Ich habe keinen Beitrag überlesen ;) Dein Vorschlag scheint
wirklich richtig zu sein.

Im Nachhinein könnte man zur Analogie auch die Energie
eines E-Feldes am Leiterstück berechnen. Wenn eine Ladung Q
auf den Leiter gebracht wird, verteilt sie sich auf seiner
zylinderformigen Oberfläche gleichmässig. Aus der Zylindersymmetrie
lässt sich ableiten, dass E-Feld nur radiale Komponente hat.
Da die Umgebung(Luft,Vakuum) kein rho (Ladungsdichte) hat,
muss div(D) = 0 sein. e0 ist konstant, deswegen gilt auch
div(E) = 0. E fällt dann auch mit 1/R ab.
Damit wäre das selbe "Problem" mit der Energie.
Hier müsste dann aber gesagt werden, dass zu der Q+ Ladung
auf dem Leiter irgendwo die zugehörige Q- Ladung existiert.
Aus der weiten Ferne betrachet "verschmelzen" die Q+ und
Q- zu 0, und E Feld erlischt in dieser Ferne.

Autor: Nixwisser (Gast)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
Auch das Vakuum hat eine Ladungs-Verschiebungsdichte !

Gruss

Antwort schreiben

Die Angabe einer E-Mail-Adresse ist freiwillig. Wenn Sie automatisch per E-Mail über Antworten auf Ihren Beitrag informiert werden möchten, melden Sie sich bitte an.

Wichtige Regeln - erst lesen, dann posten!

  • Groß- und Kleinschreibung verwenden
  • Längeren Sourcecode nicht im Text einfügen, sondern als Dateianhang

Formatierung (mehr Informationen...)

  • [c]C-Code[/c]
  • [avrasm]AVR-Assembler-Code[/avrasm]
  • [code]Code in anderen Sprachen, ASCII-Zeichnungen[/code]
  • [math]Formel in LaTeX-Syntax[/math]
  • [[Titel]] - Link zu Artikel
  • Verweis auf anderen Beitrag einfügen: Rechtsklick auf Beitragstitel,
    "Adresse kopieren", und in den Text einfügen




Bild automatisch verkleinern, falls nötig
Bitte das JPG-Format nur für Fotos und Scans verwenden!
Zeichnungen und Screenshots im PNG- oder
GIF-Format hochladen. Siehe Bildformate.
Hinweis: der ursprüngliche Beitrag ist mehr als 6 Monate alt.
Bitte hier nur auf die ursprüngliche Frage antworten,
für neue Fragen einen neuen Beitrag erstellen.

Mit dem Abschicken bestätigst du, die Nutzungsbedingungen anzuerkennen.