www.mikrocontroller.net

Forum: Analoge Elektronik und Schaltungstechnik Kurze Frage zur Herleitung der Grenzfrequenz


Autor: Mathe mein Feind (Gast)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
Hallo, ich  habe auf einer anderen Seite folgende Erklärung gefunden:

> Hallo,
>
> bei der Grenzfrequenz hat die Leistung an Z2 die halbe Maximalleistung
> erreicht. Damit muss die Ausgangsspannung auf 1/SQRT(2) abgefallen sein.
>
> Damit gilt: |H(jw)|²=0,5
>
> Tiefpass:
>
> H(jw)=1/(jwRC+1)
> |H(jw)|²=1/((wCR)²+1)
> 1/((wCR)²+1)=0,5
> (wCR)²+1=2
> (wCR)²=1
> wCR=1
> w=1/(CR)
> f= w*2pi
> f=1/(CR*2pi)
>
>
> Die selbe Bedingung mit der Grenzfrequenz, gilt auch für den Hochpass:
>
> Dessen Übertragungsfunktion lautet:
> ....

Das liest sich alles ja sehr schön.
Ich habe jetzt nur etwas Probleme diese Zeile zu verstehen.

> |H(jw)|²=1/((wCR)²+1)

Wieso wird hier nicht die komplette ÜF quadriert?
Hab ich ein Brett vorm Kopf oder ist das falsch?
Der Rest passt aber ja super, von daher glaube ich eher an das Brett.
Allerdings sollte die ganze ÜF quadriert werden, hätte ich ja unterm 
Bruch eine binomische Formel. Wo geht denn dann das +2jwCR hin???

Würde mich über nen Tip freuen.

Autor: Alexander Liebhold (lippi2000)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
Na da überleg mal wie man den Betrag von einer komplexen Zahl berechnet.

Autor: Mathe mein Feind (Gast)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
Ha, ich wusste doch das es an dem Brett liegt :-)

konjugiert Komplex.

Alles klar.

Denkste da wär ich drauf gekommen!

Dank dir.

Autor: Alexander Liebhold (lippi2000)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
Konjugiert komplex erweitert:

Grenzfrequenz ist definiert: Wenn Übertragungsfunktion auf den Wert 
1/SQRT(2) abgefallen ist.

Aufgelöst nach w ergibt die alt bekannte Gleichung

Autor: Mandrake (Gast)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
Die letzte Zeile ist Mumpitz.

Da gehört keine Wurzel rein.
Vielleicht ein bisschen mit einem L-C-System verwechselt ;-)

Gruß

Mandrake

Autor: Alexander Liebhold (lippi2000)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
Hast natürlich recht. So ist das halt, wenn man in der vorletzten Zeile 
schon gedanklich beim nächsten ist :-)

Autor: Mathe mein Feind (Gast)
Datum:
Angehängte Dateien:

Bewertung
0 lesenswert
nicht lesenswert
Könntet ihr mal einen Blick drauf werfen ob das so stimmt?

Soll für 2 gleiche, entkoppelte Tiefpässe die Formel für die 
Grenzfrequenz werden.

Autor: Exe (Gast)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
Hi MmF
Das ganze konjugiert-komplexe Erweitern bringt absolut nichts ausser 
Arbeit

Betrag von(a x b) ist Betrag(a) x Betrag(b)

Also
F(jw) = 1/(1 + jwRC)²

führt zu

'F(jw)' = 1/sqrt(1 + (wRC)²) x  1/sqrt( 1 + (wRC)²)

oder eben wie koorekt bei dir am Ende

'F(jw)' = 1/((1 + (wRC)²)

Autor: Mathe mein Feind (Gast)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
Nur für die Nachwelt,

es ist nichts gravierendes aber ich hab gerade gemerkt das in dem PDF in 
der 2 Zeile der Ausdruck unter dem ersten Bruchstrich falsch ist. Hier 
müsste ein + hin, oder das j weg. Danach stimmt wieder alles.

Nur für die, die durch ne Suche hierhin gekommen sind.

Autor: Mathe mein Feind (Gast)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
So, jetzt steh ich wirklich auf dem Schlauch.

Erbete mir nochmal Hilfe von euch!

Wenn ich ein Polynom:

a*w^5 + b*w^4 + 2a*w^2 + 2a*w + 3 = 0 habe.

Wie kann ich denn dann nach w auflösen?

Gibts dafür ne Lösung?

Autor: Michael (Gast)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
Das ist nicht mal so eben lösbar. Du hast hier schonmal drei Unbekannte, 
a,b und w, damit benötigst du für eine eindeutige Lösung auch genau drei 
Gleichungen. Hier kann man zum Beispiel schonmal gut faktorisieren. 
Schau da mal in der Richtung

Autor: Oliver W. (olliw)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
>Du hast hier schonmal drei Unbekannte, a,b und w, damit benötigst du für
> eine eindeutige Lösung auch genau drei Gleichungen.

Hier geht es darum die Nullstellen eines Polynoms zu finden, und NICHT 
darum ein lineares Gleichungssystem zu lösen. Dieses Argument hat hier 
also nichts zu suchen.

Eine allgemeine Lösungsformel gibt es nur für Polynome bis 3.ten Grad 
(die für Polynome 2.ten Grad hat jeder mal in der Schule gelernt). Wenn 
das Polynom einen grösseren Grad hat, braucht man Glück dass es ein 
einfaches Polynom ist (und man sieht das es ein einfaches ist), oder man 
muss irgendetwas wissen oder erraten, z.B. eine der Nullstellen.

Mach doch mal ein Plot des Polynoms und schau ob sich irgendwelche 
"einfache" Nullstellen finden lassen wie w=1, oder ob alle Nullstellen 
reel sind, oder so.

Ansonsten wird's schwierig bis unmöglich.

Olli

Autor: Matthias Lipinsky (lippy)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
>konjugiert Komplex.

Es geht auch ohne dieser konjugiert-komplexen Erweiterung.

Einfach Zähler und Nenner getrennt als komplexe Zahl betrachten..

Autor: Helmut (Gast)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
Numerisch ist es kein Problem ein Polynom 5. Grades zu lösen.
Das packen die verschiedenen Mathe-Programme ganz locker.
Da kommen dann natürlich nur Zahlen heraus.

Autor: Michael (Gast)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
>Hier geht es darum die Nullstellen eines Polynoms zu finden, und NICHT
>darum ein lineares Gleichungssystem zu lösen. Dieses Argument hat hier
>also nichts zu suchen.

Och doch, das Argument zählt schon oder weist du wie groß a und b ist? 
Es ist also ein Gleichungssystem, das man lösen muss oder man hat halt 
unendlich viele Lösungen.

Autor: HildeK (Gast)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
>Du hast hier schonmal drei Unbekannte, a,b und w, damit benötigst du für
> eine eindeutige Lösung auch genau drei Gleichungen.

Nein, denn für ax^2 + bx + c = 0 gibt es auch Lösungen (für x) ohne 
vier Gleichungen zu haben - die Lösungen sind eben abhängig von den 
Koeffizienten a, b und c.
Er suchte nach allgemeinen Lösungen für w, abhängig von den 
Koeffizienten a und b. Es werden wohl maximal 5 Lösungen vorhanden sein 
- nicht unendlich viele!

Autor: M. Köhler (sylaina)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
>Es werden wohl maximal 5 Lösungen vorhanden sein
>- nicht unendlich viele!

Also wenn ich mal annehme, dass a und b aus der Menge der Reellen Zahlen 
kommt und man keine Werte zuweist dann sind es unendlich viele Lösungen. 
Klar, wenn man z.B. sagt, a=12 und b=44.983 dann kommt man halt auf 5 
Lösungen.

Autor: Matthias Lipinsky (lippy)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
>Es werden wohl maximal 5 Lösungen vorhanden sein

Es werden immer fünf Lösungen sein, da es eine Gleichung fünfter 
ORdnung ist. (möglicherweise gibt es Doppellösungen oder konjugiert 
komplexe L.)

Denn
>a*w^5 + b*w^4 + 2a*w^2 + 2a*w + 3 = 0

lässt sich umschreiben zu:

 (w-w1) * (w-w2) * (w-w3) * (w-w4) * (w-w5) = 0

w1...w5 sind die fünf Lösungen.

weiter gilt (Ausmultiplizieren):

w1  w2  w3  w4  w5 = 3
...                    = 2a
...                    = 2a
...                    = b
...                    = a

Autor: Oliver W. (olliw)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
Michael, du benutzt hier deine eigene Definition des Begriffs Lösung!

Ein Polynom N.ten Grades hat exakt (!) N Nullstellen, genau nach der 
Formel von Matthias für N = 5. Wenn man davon spricht ein Polynoms zu 
lösen dann meint man die Nullstellen des Polynoms zu finden. Ob da noch 
irgendwelche Parameter im Spiel sind ist dabei Wurst. Du must das so 
lesen: Für gegebene Zahlen für a,c hast du ein Polynom das hier 5 
Lösungen hat, für andere Zahlen für a,c hast du ein ANDERES Polynom, das 
wieder 5 Lösungen hat, etc...

Das obige Polynom muss genau 5 Nullstellen haben, dabei können 
Nullstellen mehrfach oder komplex sein. Im Fall einer komplexen 
Nullstelle muss es auch die konjugiert komplexe Nullstelle geben. Daraus 
folgt dass das obige Polynom mindestens 1 reelle Nullstelle haben muss. 
Vielleicht kann man die ja durch plotten erraten.

Andernfalls könnte es auch noch nützlich sein den Rechenweg der zu dem 
obigen Polynom geführt hat genauer anzusehen. Oft ergeben sich solche 
grossen Poylnome daraus dass man irgendwo mal Kleinere miteinander 
multipliziert hat...

Olli

Autor: Mathe mein Feind (Gast)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
Hallo Zusammen,

ich danke euch für eure zahlreichen Antworten.
Es ist also nicht so einfach zu lösen.
Ich möchte nur mal eben ein paar Hintergrundinfos geben.
Ich habe ein Filterproblem und habe versucht die Grenzfrequenz von 3 
passiven entkoppelten Tiefpässen zu berechnen, wobei der erste anders 
dimensioniert wird wie beiden Letzten.
a und b sind also bekannt und stehen für a=tau*tau1 und b=tau
Die +3 ist falsch und müsste -1 sein, was aber ja nichts an der Sache 
ändert.
Es war halt ein Versuch, der bei diesem Polynom endete.

Ich versuch die Sache jetzt per LTSpice zu simulieren und somit eine 
Lösung zu finden. Hab jetzt in der Simulation gemerkt, das meine Idee eh 
nicht geklappt hätte.

Ich danke euch allen für eure Hilfe.

Gruß
MmF

Autor: M. Köhler (sylaina)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
>Michael, du benutzt hier deine eigene Definition des Begriffs Lösung!

Das ist nicht meine eigene Definition sondern die ganz normale 
Mathematik. Sofern a, b des Polynoms nicht gegeben sind gibt es nun mal 
unendlich viele Lösungen. Sowie a und b Werte zugewiesen werden, z.B. 
aus der Menge der reellen Zahlen (das dürfte das Übliche sein) gibt es, 
wie ihr schon richtig gesagt hab, genau fünf Lösungen.

Autor: Oliver W. (olliw)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
vielleicht denkst du nochmal darüber nach was der Unterschied zwischen 
a,b und w ist (Hilfe: a,b sind Parameter, w ist die Variable), und warum 
Mathematiker so einen Unterschied machen...

aber wie du meinst :-)

Olli

Autor: M. Köhler (sylaina)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
Wenn a, b unendlich viele Werte annehmen dürfen dann gibt es nunmal auch 
unendlich viele Lösungen. Da kannste dich nun drehen und wenden wie du 
willst. Das ist nunmal so und das wird dir auch jeder Mathematiker 
sagen.

Antwort schreiben

Die Angabe einer E-Mail-Adresse ist freiwillig. Wenn Sie automatisch per E-Mail über Antworten auf Ihren Beitrag informiert werden möchten, melden Sie sich bitte an.

Wichtige Regeln - erst lesen, dann posten!

  • Groß- und Kleinschreibung verwenden
  • Längeren Sourcecode nicht im Text einfügen, sondern als Dateianhang

Formatierung (mehr Informationen...)

  • [c]C-Code[/c]
  • [avrasm]AVR-Assembler-Code[/avrasm]
  • [code]Code in anderen Sprachen, ASCII-Zeichnungen[/code]
  • [math]Formel in LaTeX-Syntax[/math]
  • [[Titel]] - Link zu Artikel
  • Verweis auf anderen Beitrag einfügen: Rechtsklick auf Beitragstitel,
    "Adresse kopieren", und in den Text einfügen




Bild automatisch verkleinern, falls nötig
Bitte das JPG-Format nur für Fotos und Scans verwenden!
Zeichnungen und Screenshots im PNG- oder
GIF-Format hochladen. Siehe Bildformate.
Hinweis: der ursprüngliche Beitrag ist mehr als 6 Monate alt.
Bitte hier nur auf die ursprüngliche Frage antworten,
für neue Fragen einen neuen Beitrag erstellen.

Mit dem Abschicken bestätigst du, die Nutzungsbedingungen anzuerkennen.