www.mikrocontroller.net

Forum: Digitale Signalverarbeitung / DSP tschebyschow filter


Autor: daniel (Gast)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
Hallo,

ist ein tschebyschow Filter nur eine Realisierung eines (idealen) 
Tiefpass?
Gibt es auch tschebyschow Bandpassfilter oder Hochpassfilter?

Vielleicht stehe ich einwenig auf der Leitung, vielleicht kann einer
mir helfen. Woher kommt die Phasendrehung bei all den Filtern?
Wenn ich tiefpassfiltern möchte, warum überführe ich ein Signal
nicht einfach in seine X(f) Form und schneide dort alles ab Fgrenz ab
(setze auf 0), und rekonstriere wieder es als Zeitsignal
(bzw diskrete Wertefolge).
Oder ergibt sich die Phasendrehung aus der Verwendung von R,L,C 
Elementen?
(dann wäre es nur ein Problem bei der analogen Realisierung von Filtern)

Grüsse, Daniel

Autor: Andreas Schwarz (andreas) (Admin) Benutzerseite Flattr this
Datum:

Bewertung
0 lesenswert
nicht lesenswert
daniel wrote:
> ist ein tschebyschow Filter nur eine Realisierung eines (idealen)
> Tiefpass?
> Gibt es auch tschebyschow Bandpassfilter oder Hochpassfilter?

Ja.

> Vielleicht stehe ich einwenig auf der Leitung, vielleicht kann einer
> mir helfen. Woher kommt die Phasendrehung bei all den Filtern?

Die nichtlineare Phase entsteht nur bei IIR-Filtern, bei FIR kann man 
immer eine lineare Phase realisieren. Wie die entsteht kann man sich aus 
Übertragungsfunktion oder Pol-Nullstellen-DIagramm herleiten.

> Wenn ich tiefpassfiltern möchte, warum überführe ich ein Signal
> nicht einfach in seine X(f) Form und schneide dort alles ab Fgrenz ab
> (setze auf 0), und rekonstriere wieder es als Zeitsignal
> (bzw diskrete Wertefolge).

Kannst du machen - allerdings musst du dazu das ganze Signal auf einmal 
verarbeiten, was meistens nicht praktikabel ist. Außerdem musst du 
beachten dass das Signal durch die Transformation als periodisch 
betrachtet wird, das heißt nach der Filterung im Frequenzbereich sieht 
dein Signal so aus als hättest du es periodisch fortgesetzt und dann 
gefiltert. Das kann zu unerwünschten Ergebnissen führen.

> Oder ergibt sich die Phasendrehung aus der Verwendung von R,L,C
> Elementen?
> (dann wäre es nur ein Problem bei der analogen Realisierung von Filtern)

Analoge Filter und IIR-Filter verhalten sich ziemlich ähnlich .

Autor: Marco S (Gast)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
Der ideale TP ist natürlich nicht realisierbar.

Die Idee mit dem Boxcar-Filter hatte ich auch schon. Allerdings kommt es 
neben der eben erwähnten Periodizität zu weiteren Effekten. Wenn du im 
Frequenzbereich dein H(f) mit einer Hutfunktion multiplizierst, kannst 
du auch im Zeitbereich das Signal mit einer Si-Funktion falten. Das 
führt dazu, daß du an den Enden deines diskreten Signals Schwingungen 
rein bekommst.

Autor: rene (Gast)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
Ein Filter ist eine Differentialgleichung im komplexen Raum. Eine 
unendliche Steilheit bedingt unendlich viel Pole und Nullstellen. Soviel 
Resourcen hat man selten. Meits genuegen auch weniger.

Rene

Autor: daniel (Gast)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
[...]

>Frequenzbereich dein H(f) mit einer Hutfunktion multiplizierst, kannst
>du auch im Zeitbereich das Signal mit einer Si-Funktion falten. Das
>führt dazu, daß du an den Enden deines diskreten Signals Schwingungen
>rein bekommst.

stimmt, an die Faltung habe ich nicht gedacht.
Ich hab bei der Geschichte eine komplete Vorstellungslücke ..
wenn man zb ein Signal x(t) hat, welches alle Frequenzen
von 0 bis 2*fo hat. Schneide ich mit einem Rechteck im
Frequenzbereich X(f) alle Frequenzen höher als f0 ab,
dann entspricht das der Theorie nach, einer Faltung von
x(t) mit Si Funktion im Zeitbereich.
Die Si Funktion bringt ja vielleicht Schwingungen
am Ende rein, aber sie überlagert wahrscheinlich
destruktiv die Frequenzen, die man weghaben will.
Stimmt das in etwa so?
Könnte man andersum behaupten, dass es keine andere bessere Möglichkeit
gibt, diese störenden Frequenzen zu entfernen, als mit Si zu falten?
Denn dann wären doch die Schwingungen an den Enden kein Effekt sondern
Bestandteil von gewünschtem x(t).
Andersum gesagt, wenn man sein gewunschtes x(t) aus Harmonischen
zusammenmischen würde, würden sich dann an den Enden keine
Schwingungen entstehen?
BTW: Hat dieser Effekt einen Namen, das ich es nachlesen kann?

Wenn ich schon dabei bin, wollte ich noch folgende Fragen loswerden :)
Zum Leckeffekt.
Ich habe nämlich nachgedacht ob das ein Zufall sei, dass die meisten
wenn nicht alle Fensterfunktionen die Werte an Rande der 
Beobachtungsperiode
zu null ziehen. Alle ausser Rechteckfenster, das eben alle gleich
1 gewichtet. Wenn man eine Schwingung wie sinus an den Rändern
der Beobachtungszeit betrachtet, und die Beobachtungszeit nicht
mehrfache der Periode des Sinus ausmacht, dann ist x(links) != x(rechts)
Weil aber das Zeitsignal als periodisch in der Zeit fortgesetzt
wird, wird an x(rechts) x(links) angehängt und man hat eine
Sprungstelle im Signal. Und Sprungstellen erfördern zur Rekonstruktion
grössere Frequenzen. Um das zu vermeiden, drücken die Fensterfunktionen
x(links) und x(rechts) zu null. Ist das Unsinn?
Wie gesagt, es sind nur meine Überlegungen (nicht als Wahr annehmen)

Bedanke mich für Eure Antworten

Grüsse, Daniel

Antwort schreiben

Die Angabe einer E-Mail-Adresse ist freiwillig. Wenn Sie automatisch per E-Mail über Antworten auf Ihren Beitrag informiert werden möchten, melden Sie sich bitte an.

Wichtige Regeln - erst lesen, dann posten!

  • Groß- und Kleinschreibung verwenden
  • Längeren Sourcecode nicht im Text einfügen, sondern als Dateianhang

Formatierung (mehr Informationen...)

  • [c]C-Code[/c]
  • [avrasm]AVR-Assembler-Code[/avrasm]
  • [code]Code in anderen Sprachen, ASCII-Zeichnungen[/code]
  • [math]Formel in LaTeX-Syntax[/math]
  • [[Titel]] - Link zu Artikel
  • Verweis auf anderen Beitrag einfügen: Rechtsklick auf Beitragstitel,
    "Adresse kopieren", und in den Text einfügen




Bild automatisch verkleinern, falls nötig
Bitte das JPG-Format nur für Fotos und Scans verwenden!
Zeichnungen und Screenshots im PNG- oder
GIF-Format hochladen. Siehe Bildformate.
Hinweis: der ursprüngliche Beitrag ist mehr als 6 Monate alt.
Bitte hier nur auf die ursprüngliche Frage antworten,
für neue Fragen einen neuen Beitrag erstellen.

Mit dem Abschicken bestätigst du, die Nutzungsbedingungen anzuerkennen.