Forum: HF, Funk und Felder Was ist der Wellenwiderstand eines Kabels anschaulich?


Announcement: there is an English version of this forum on EmbDev.net. Posts you create there will be displayed on Mikrocontroller.net and EmbDev.net.
von Johnny (Gast)


Lesenswert?

Tach!

Ich hätte da mal eine Anfängerfrage ...

Mir ist nicht klar, was es mit der Impedanz von Kabeln auf sich hat. Um 
ein konkretes Beispiel zu nehmen: für die Farbsignale im VGA-Standard 
ist eine Impedanz von 75 Ohm vorgesehen. Was ich halbwegs verstanden 
habe, ist, dass das bedeutet, dass Signalquelle und Last ("Empfänger") 
einen Innenwiderstand von 75 Ohm haben müssen, um Rückreflexionen des 
Signals in das Kabel zu verhindern. Aber was bedeutet es jetzt, dass das 
Kabel selbst 75 Ohm Wellenwiderstand haben muss? Was passiert, wenn ich 
ein 50 Ohm Koxialkabel statt einem 75 Ohm Kabel verwende? - also schon 
klar, das Signal wird irgendwie "gestört", aber warum? Was passiert da 
physikalisch im Kabel? Oder nochmal von einer anderen Seite betrachtet: 
angenommen ich würde einen "idealen" Umschalter in das Signal legen, 
also einen der in seinen beiden geschlossenen Zuständen wirklich jeweils 
0 Ohm hat, wieso kann das trotzdem ein Problem für die Sigalqualität 
sein? In wie weit müsste dieser Umschalter an die 75 Ohm angepasst sein 
und auf welche messbare Eigenschaft des Schalters bezieht sich das?

Vielen Dank für alle Hinweise!

Gruß
John

: Verschoben durch Moderator
von Purzel H. (hacky)


Lesenswert?

Ein Serieelement, das ungleich 75 Ohm hat macht Reflexionen. Ein 
Schalter, der 0 Ohm hat, und laenge Null, sollte im durchgeschaltetenen 
Fall keine Reflexionen machen. Wenn er offen ist, reflektiert er aber 
alles.

von Johnny (Gast)


Lesenswert?

Okay, danke schonmal! Nochmal ganz naiv weitergefragt: angeommen es 
befindet sich ein *Um*schalter im Signalweg der die Quelle zwischen zwei 
75 Ohm Lasten hin- und herschaltet. Dann würden - theoretisch - keine 
Probleme auftreten?

Kann man sich irgendwie klarmachen, mit welchen physikalischen 
Eigenschaften des Kabels der Wellenwiderstand zusammenhängt? Er scheint 
ja zB nicht von der Länge des Kabels abhängig zu sein, oder? Das wäre 
für so klassische resistive und kapazitive Kabeleigenschaften sehr wohl 
der Fall ...

Danke!

Gruß
John

von TTL (Gast)


Lesenswert?

Die Werte aus Induktivität pro Meter und Kapazität pro Meter begründen 
den Wellenwiderstand

von Uwe S. (de0508)


Lesenswert?

Hallo,

nun ja, es gibt eine Formel für Koaxialkabel, siehe AFU Literatur.

Wenn man messen kann, dann gilt für denn Wellenwiderstand

Z = Wurzel(L/C)

L in Henry und C in Ferad, wobei die Länge l hier nicht mit eingeht.
Somit solle man für einen hohe Genaugikeit einige meter Kabel vorliegen 
haben.

: Bearbeitet durch User
von ich (Gast)


Lesenswert?

Uwe S. schrieb:
> Hallo,
>
> nun ja, es gibt eine Formel für Koaxialkabel, siehe AFU Literatur.
>
> Wenn man messen kann, dann gilt für denn Wellenwiderstand
>
> Z = Wurzel(L/C)
>
> L in Henry und C in Ferad, wobei die Länge l hier nicht mit eingeht.
> Somit solle man für einen hohe Genaugikeit einige meter Kabel vorliegen
> haben.

Funktioniert übrigens auch für Paralleldrahtleitungen/Twisted Pair usw.

von Max (Gast)


Lesenswert?

Johnny schrieb:
> Er scheint
> ja zB nicht von der Länge des Kabels abhängig zu sein, oder?

Doch da die Leitungsbeläge in ihrer Einheit 1/m haben also Ohm / m oder 
F / m.
Ich bin ja schon froh, dass du de Leitungswellenwiderstand nicht mit 
einem Multimeter messen willst ;-)

von Falk B. (falk)


Lesenswert?

Mal ganz stark vereinfacht formuliert.

Der Wellenwiderstand ist so wie der Durchmesser von einem Wasserrohr. 
Wenn man dort ein 2. Rohr (Wasserpumpe) anschließt, so bekommt man nur 
dann einen ungestörten Wasserfluß, wenn beide den gleichen Durchmesser 
haben. Ist der Anschluß der Wasserpumpe größer, prallt ein Teil des 
Wasser aus auf eine Wand und wird reflektiert bzw. verursacht Wirbel.

------+
   <- |
      +--------------
--->
      +--------------
   <- |
------+

Ist der Anschluß der Wasserpumpe kleiner, wird das Wasser abgebremst, 
weil es ja nun einen größeren Querschnitt ausfüllen muss, auch das macht 
Reflektionen und Wirbel.


      +--------------
      |
------+
--->
------+
      |
      +--------------

von Bruchrechnung (Gast)


Lesenswert?

Max schrieb:
> Johnny schrieb:
>> Er scheint
>> ja zB nicht von der Länge des Kabels abhängig zu sein, oder?
>
> Doch da die Leitungsbeläge in ihrer Einheit 1/m haben also Ohm / m oder
> F / m.
> Ich bin ja schon froh, dass du de Leitungswellenwiderstand nicht mit
> einem Multimeter messen willst ;-)

Genau....und Meter/Meter kürzt sich zum Glück auch nicht weg....

von Carsten R. (kaffeetante)


Lesenswert?

Dazu müßte man vertehen was komplexe Widertände sind.

Mal an der Oberfläche gekratzt und ich vruzichte jetzt mal darauf 
Wechselstrom und Wechselspannung zu differenzieren. Das wird mir sonst 
zu detailliert für den Moment

Bei Gleichstrom hat das Kabel einen Ohmschen Widerstand. Haben wir es 
mit Wechselspannung zu tun, so machen sich die Kapazitäten C und 
Induktivitäten L zusätzlich bemerkbar. Kapazität und Induktivität 
verhalten sich unterschiedlich in Wechselstromsystemen.

Wenn sie beide zusammenwirken, ergibt sich je nach Kapazität und 
Induktivität bei einer bestimmten Frequenz ein Bereich in dem sich die 
Kombination sehr ähnlich einem ohmschen Widerstand gegenüber der Welle 
verhält, entscheidend ist das Verhältnis von C zu L. Darum ist die 
Angabe des Wellenwiderstandes frequenzabhängig. Mache ich das Kabel 
länger oder kürzer, so ändere ich C und L beide im gleichen 
Verhältnis, der Effekt hebt sich auf und daher ist der Wellenwiderstand 
nicht von der Länge abhängig, im Gegensatz zum ohmschen Widerstand.

Am Leitungsende läuft das Signal vor die Wand, dank der Induktivität 
will der Strom weiterfließen, aber da das Kabel endet ist keine 
Kapazität da um diese Energie zu speichern. Dies führt zur Reflxion des 
Signals. Ein 75 Ohm Widerstand sieht für die Welle wie ein unendlich 
langes Kabel mit dem Wellenwiderstand 75 Ohm aus. Daher gibt es dann 
auch keine/kaum Reflexionen. Ein unpassender Abschlußwiderstand kann die 
unendliche Fortführung der Leitung nicht sauber simulieren und es kommt 
dann doch zu Störungen. Wie stark diese dann sind, insbesondere im 
vergleich zur vollständig fehlender Terminierung, wäre im konkreten Fall 
nachzurechnen und zu messen. Dazu wäre aber etwas mehr Grundwissen 
nötig.

von Max (Gast)


Lesenswert?

Bruchrechnung schrieb:
> Genau....und Meter/Meter kürzt sich zum Glück auch nicht weg....

Aha dann ist es also kein Unterschied ob ich einen Widerstandsbelag von 
2 Ohm  m habe oder einen von 10 Ohm  m???

von Carsten R. (kaffeetante)


Lesenswert?

Carsten R. schrieb:
> Am Leitungsende läuft das Signal vor die Wand, dank der Induktivität
> will der Strom weiterfließen, aber da das Kabel endet ist keine
> Kapazität da um diese Energie zu speichern.

Der Teil wie die Reflexion zustande kommt ist nicht ganz korrekt. Ich 
hatte versucht den Vorgang abzukürzen, aber das war wohl nicht gut. Wie 
auch immer, es geht ja auch mehr darum, daß das Ende die Reflexionen 
verursacht und wenge wie dies exakt geschieht.

Kernpunkt ist:

Der Endwiderstand hat die Aufgabe am Ende der Leitung eine unendlich 
lange Fortführung der Leitung zu simulieren damit es nicht zu Störungen 
kommt. Dies ist aber Frequenzabhängig. Im Extrembeispiel mit 
Gleichspannung (Frequenz 0) gelingt die Simmulation offensichtlich nicht 
so gut.

von Johnny (Gast)


Lesenswert?

Max schrieb:
> Bruchrechnung schrieb:
>> Genau....und Meter/Meter kürzt sich zum Glück auch nicht weg....
>
> Aha dann ist es also kein Unterschied ob ich einen Widerstandsbelag von
> 2 Ohm  m habe oder einen von 10 Ohm  m???

Also ich hab's jetzt so verstanden dass für ein spezifisches Kabel mit 
einem definierten L/l und C/l (l = länge) die Länge keine Rolle spielt 
weil (L/l)/(C/l)=L/C.

Ich komme der Sache näher, vielen Dank für alle Erläuterungen, war 
schonmal sehr hilfreich!

John.

von Simon K. (simon) Benutzerseite


Lesenswert?

Max schrieb:
> Johnny schrieb:
>> Er scheint
>> ja zB nicht von der Länge des Kabels abhängig zu sein, oder?
>
> Doch

Nö! Der Leitungswellenwiderstand ist nicht von der Länge des Kabels 
abhängig.

Er ist auch nicht im Sinne eines existierenden ohmschen Widerstandes zu 
verstehen, sondern bezeichnet einen Ersatzwiderstand (d.h. die Einheit 
"Ohm" kommt "zufällig" dabei heraus), der einer elektromagnetischen 
Welle entgegengesetzt wird.
Und je nach dem in welchem Medium eine elektromagnetische Welle läuft 
(z.B. Luft oder Teflon oder was auch immer für ein Material in 
beispielsweise einem Koaxialkabel enthalten ist) ist der 
Wellenwiderstand unterschiedlich.

Wikipedia schreibt beispielsweise:
Der Wellenwiderstand, auch die Wellenimpedanz oder die Impedanz ist eine 
Eigenschaft eines Mediums, in dem sich eine Welle ausbreitet. Das 
Verhältnis von reflektierter und transmittierter Amplitude der Welle an 
einer Grenzfläche wird durch die Wellenwiderstände der beiden Medien 
bestimmt.
Man kann sich diesen Widerstand anschaulich etwa als die Steifigkeit 
bzw. Härte oder Weichheit vorstellen, die das Medium der sich 
ausbreitenden Welle entgegensetzt. Dadurch stehen z. B. Kraft und 
Bewegung (bei akustischen bzw. mechanischen Wellen), Spannung und Strom 
(bei Wellen auf elektrischen Leitungen) oder elektrischer und 
magnetischer Feldanteil (bei elektromagnetischen Feldwellen) in einem 
bestimmten Verhältnis zueinander.

http://de.wikipedia.org/wiki/Wellenwiderstand

Die Erklärung von Falk finde ich ganz gut.

: Bearbeitet durch User
von Simon K. (simon) Benutzerseite


Lesenswert?

Johnny schrieb:
> Max schrieb:
>> Bruchrechnung schrieb:
>>> Genau....und Meter/Meter kürzt sich zum Glück auch nicht weg....
>>
>> Aha dann ist es also kein Unterschied ob ich einen Widerstandsbelag von
>> 2 Ohm  m habe oder einen von 10 Ohm  m???
>
> Also ich hab's jetzt so verstanden dass für ein spezifisches Kabel mit
> einem definierten L/l und C/l (l = länge) die Länge keine Rolle spielt
> weil (L/l)/(C/l)=L/C.
>
> Ich komme der Sache näher, vielen Dank für alle Erläuterungen, war
> schonmal sehr hilfreich!

So ist es. Induktivitäts- und Kapazitätsbelag ergeben sich dabei als 
Materialkonstante.

: Bearbeitet durch User
von Johnny (Gast)


Lesenswert?

Hello again,

nochmal eine Nachfrage. Ist zwar nicht mehr ganz die Ausgangsfrage, aber 
der gleiche Kontext ...

Wenn ich bei einer 75 Ohm Quelle zwei Lasten parallel anschließen möchte 
(mal vorausgesetzt das macht der Sache nach Sinn), kann ich das Ganze 
dann im Ergebnis einfach "ohmsch" betrachten? Also: zwei 75 Ohm Lasten 
parallel entsprechen einer 37.5 Ohm Last, damit die Quelle wieder 75 Ohm 
"sieht", müsste also ein 37.5 Ohm Widerstand vor die beiden Lasten. Aber 
aus Sicht der Lasten (ich nenn das mal einfach so, ich meine sozusagen 
den "Empfänger") sieht das natürlich anders aus, die Lasten "sehen" doch 
- wenn ich mich nicht verrechnet habe - (75 Ohm + 37.5 Ohm)||75 Ohm = 45 
Ohm. Wäre das ein Problem?

Sorry wenn die Fragen noch etwas unbeholfen sind - ich bin etwas 
unbeholfen :-)

Danke!

Gruß
John

von Jörg W. (dl8dtl) (Moderator) Benutzerseite


Lesenswert?

Du versuchst gerade, den Leistungsteiler neu zu erfinden. ;-)  Wie du
schon bemerkst, tun es zwei Widerstände nicht, weil damit nur eine
der Seiten impedanzrichtig ist.  Wenn man aber drei Widerstände
nimmt, erhält man ein völlig symmetrisches Gebilde, den resistiven
6-dB-Leistungsteiler.

3 dB ist ja eine Halbierung der Leistung.  Diese entsteht durch die
Aufteilung auf zwei Tore ohnehin.  Wenn man die Impedanzen nun rein
durch Widerstände wieder zurechtrücken will, werden weitere 3 dB (also
nochmals die Hälfte der Gesamtleistung) in diesen Widerständen
verheizt.  Der Vorteil dieses Gebildes ist, dass es einfach, breitbandig
und vollständig symmetrisch bezüglich der drei Tore ist (kein Tor kann
also nur als Eingang oder nur als Ausgang fungieren, sie sind
untereinander alle gleich).

Will man dagegen möglichst verlustarm teilen, geht das nicht mehr
frequenzunabhängig, denn dann darf sich im „normalen“ Signalpfad
(also dem, der bei exakter 50-Ω-Anpassung an allen Toren vorliegt)
kein Widerstand mehr befinden, da dieser ja in jedem Falle eine
zusätzliche Dämpfung einbringen würde.  Das Resultat hier wäre der
Wilkinson-Teiler.

Mehr zu alldem hier:

http://www.mydarc.de/dc4ku/Power_Splitter.pdf

: Bearbeitet durch Moderator
von Uwe .. (uwegw)


Lesenswert?

Johnny schrieb:
> Hello again,
>
> nochmal eine Nachfrage. Ist zwar nicht mehr ganz die Ausgangsfrage, aber
> der gleiche Kontext ...
>
> Wenn ich bei einer 75 Ohm Quelle zwei Lasten parallel anschließen möchte
> (mal vorausgesetzt das macht der Sache nach Sinn), kann ich das Ganze
> dann im Ergebnis einfach "ohmsch" betrachten?

Ja, das kann man.

 Also: zwei 75 Ohm Lasten
> parallel entsprechen einer 37.5 Ohm Last, damit die Quelle wieder 75 Ohm
> "sieht", müsste also ein 37.5 Ohm Widerstand vor die beiden Lasten.
Richtig.

 Aber
> aus Sicht der Lasten (ich nenn das mal einfach so, ich meine sozusagen
> den "Empfänger") sieht das natürlich anders aus, die Lasten "sehen" doch
> - wenn ich mich nicht verrechnet habe - (75 Ohm + 37.5 Ohm)||75 Ohm = 45
> Ohm. Wäre das ein Problem?

Das wäre nur ein Problem, wenn die Lasten aktiv ein Signal erzeugen 
würden. Das sie aber passiv sind und auch (weil Anpassung herrscht) kein 
Signal reflektiert wird, ist das egal.

von ich (Gast)


Lesenswert?

Max schrieb:
> Johnny schrieb:
>> Er scheint
>> ja zB nicht von der Länge des Kabels abhängig zu sein, oder?
>
> Doch da die Leitungsbeläge in ihrer Einheit 1/m haben also Ohm / m oder
> F / m.

Das ist doch Unsinn. Wenn du ein 75 Ohm-Kabel von 10m Länge hast und 
schneidest davon 5m ab, hast du wohl nur noch 37.5 Ohm?
Antwort: Nein, es hat immer noch 75 Ohm.

> Ich bin ja schon froh, dass du de Leitungswellenwiderstand nicht mit
> einem Multimeter messen willst ;-)
Wenn man ein gutes Multimeter hat, mit dem man C und L messen kann, 
warum nicht?
Zur Erinnerung: Z = Wurzel(L/C)

von Joe (Gast)


Lesenswert?

Eine anschauliche physikalisch richtige Erklärung findet man, wenn man 
berücksichtigt, dass die beiden Leiter eines Kabels (Koax- oder 
Parallel-) je eine Induktivität und Kapazität zueinander besitzen.

Das Laden der Kapazität über die induktiven "Kabel" erfordert einen 
Strom, der gemäß Induktionsgesetz agiert.

Das Verhältnis zwischen max. Spannung und max. Strom ist 
verständlicherweise konstant, wie bei einem Widerstand.

Für z = Wurzel(L/C) ergibt sich zusätzlich als Einheit Ohm, so dass die 
Bezeichnung Wellenwiderstand angebracht ist.

Joe

von kingcopper (Gast)


Lesenswert?

Ein unendlich langes Kabel mit einem Wellenwiderstand von 50 Ohm verhält 
sich signalmäßig wie ein 50 Ohm Widerstand. Allerdings wird die 
zugeführte Energie nicht in Wärme umgewandelt, sondern lediglich durch 
das Kabel wegtransportiert.
Schneidet man das Kabel jetzt durch und ersetzt den abgeschnittenen Teil 
durch einen 50 Ohm Widerstand, so verhält sich das neue Gebilde 
signalmäßig wie ein unendlich langes Kabel. Wegen dem abgeschnittenen 
Teil kann aber keine Energie mehr wegtransportiert werden. Diese Energie 
wird stattdessen nun im zugefügten Widerstand verheizt.

von A-Freak (Gast)


Lesenswert?

> Ich bin ja schon froh, dass du de Leitungswellenwiderstand nicht mit
> einem Multimeter messen willst ;-)

Das geht schon wenn das Kabel lang genug ist :-)

Ich versuche mal den Wellenwiderstand im Zeitbereich zu erklären.

Denke dir ein Kabel das keine merklichen Verluste hat und so lang ist 
(mehrere hunderttausend Kilometer) daß das Signal darin mehrere Sekunden 
lang unterwegs ist.

Wenn du jetzt am Anfang des Kabels ein Widerstandsmeßgerät anschließt 
dann wird es für ein paar Sekunden einen Widerstand anzeigen der dem 
Wellenwiderstand des Kabels entspricht. Spannung und Strom des 
Meßgerätes laufen das Kabel entlang wie eine Wasserwelle in einem Kanal. 
Was am Ende des Kabels angeschlossen ist spielt erstmal noch keine Rolle 
weil dort noch keine Spannung und kein Strom angekommen sind.

Ist am Ende des Kabels ein Widerstand angeschlossen der dem 
Wellenwiderstand gleich ist dann läuft die Welle in den Widerstand 
hinein ohne anzustoßen. Es gibt keine Reflektion und das Meßgerät bleibt 
konstant stehen.

Ist der Widerstand am Ende größer oder kleiner als der Wellenwiderstand 
dann stößt die Welle dort an. Ist der Widerstand höher staut sich der 
Strom und die Spannung steigt an. Eine Welle mit gleicher Polarität 
läuft den ganzen Weg durch das Kabel zurück. Ist der Widerstand kleiner 
fliest mehr Strom heraus als durch die Welle ankam. Eine Welle mit 
negativer Polarität läuft ins Kabel zurück.

Erst wenn die rückwärts laufende Welle am Meßgerät angekommen ist kann 
sich dessen Anzeige ändern. Kommt eine positive Welle zurück steigt die 
Spannung am Meßgerät und es zeigt einen höherne Widerstand an. Kommt 
eine negative Welle zurück steigt der Strom und es zeigt einen 
niedrigeren Widerstand an.

von Johnny (Gast)


Lesenswert?

Jörg Wunsch schrieb:
> Wie du
> schon bemerkst, tun es zwei Widerstände nicht, weil damit nur eine
> der Seiten impedanzrichtig ist.

Uwe ... schrieb:
> Das wäre nur ein Problem, wenn die Lasten aktiv ein Signal erzeugen
> würden. Das sie aber passiv sind und auch (weil Anpassung herrscht) kein
> Signal reflektiert wird, ist das egal.

Okay, danke! Sehe ich es richtig dass Du, Jörg, eher den "allgemeinen 
Fall" beschreibst, Uwe aber durchaus recht hat, wenn das System nur eine 
"Richtung" hat (also nur das was ich als "Quelle" bezeichnet habe 
"sendet")?

Jörg Wunsch schrieb:
> 3 dB ist ja eine Halbierung der Leistung.  Diese entsteht durch die
> Aufteilung auf zwei Tore ohnehin.  Wenn man die Impedanzen nun rein
> durch Widerstände wieder zurechtrücken will, werden weitere 3 dB (also
> nochmals die Hälfte der Gesamtleistung) in diesen Widerständen
> verheizt.

an den Punkt habe ich noch garnicht gedacht, klingt aber erstmal 
logisch. Allerdings: wenn ich jetzt in meinem konkreten Fall (nur eine 
Seite ist Quelle) durch meine zusätzlichen Widerstände den 
Innenwiderstand des gesamten Konstruktes (mitsamt der Lasten) aus Sicht 
der Quelle wieder auf 75 Ohm drehe, dann sollte doch auch die 
Verlustleistung in dem Ding gleich bleiben, oder?

Gruß
John

von Jörg W. (dl8dtl) (Moderator) Benutzerseite


Lesenswert?

Johnny schrieb:
> Allerdings: wenn ich jetzt in meinem konkreten Fall (nur eine Seite ist
> Quelle) durch meine zusätzlichen Widerstände den Innenwiderstand des
> gesamten Konstruktes (mitsamt der Lasten) aus Sicht der Quelle wieder
> auf 75 Ohm drehe, dann sollte doch auch die Verlustleistung in dem Ding
> gleich bleiben, oder?

Deine Rechnung oben war aber falsch: du musst jedem Ausgangsport
nochmal 75 Ω voranschalten, damit ergeben sich dann für jede Seite
150 Ω.  Diese parallel sind wieder die 75 Ω, die die Eingangsseite
sehen muss.

Da siehst du aber schon, dass sich ausgangsseitig die Leistung auf
vier gleiche Widerstände von je 75 Ω teilt (2x die Last, 2x deren
Vorwiderstände).  Das Ganze ist also auch ein 6-dB-Splitter, nur
eben unsymmetrisch.  Wenn du statt 2 x 75 Ω dann 3 x 25 Ω nimmst,
bist du immer noch bei 6 dB, hast den Splitter aber symmetrisch.

: Bearbeitet durch Moderator
von Johnny (Gast)


Lesenswert?

Ich gehe jetzt mal von der 3 x 25 Ω Variante aus, die auch in dem PDF 
von dir dargestellt war. Aber nochmal zum letzten Punkt aus meinem 
Posting oben, da habe ich noch irgendwie ein Brett vorm Kopf: Durch die 
zusätzlichen Widerstände sieht doch die Quelle auch wieder 75 Ω, wenn 
die beiden Lasten dranhängen. Also sollte doch insgesamt genauso so viel 
Leistung umgesetzt werden wie wenn nur eine Last angeschlossen ist. Wo 
denke ich da falsch? Mir geht es konkret darum, ob/wie man an einen 
bestehenden Ausgang mit mit 75 Ω statt (wie eigentlich vorgesehen) eine 
zwei 75 Ω Lasten anschließen kann, ohne Einschränkungen bei der Funktion 
hinnehmen zu müssen. Danke nochmal für die Hinweise!

Gruß
John

von Jörg W. (dl8dtl) (Moderator) Benutzerseite


Lesenswert?

Johnny schrieb:
> Wo denke ich da falsch?

Darin, dass du zweimal je 37,5 Ω vor die Ausgänge schalten möchtest.  Du
musst zweimal je 75 Ω davor schalten.  Damit wird jeder der beiden
Ausgänge auf 150 Ω "erweitert", und diese beiden 150-Ω-Lasten ergeben
parallel wieder 75 Ω.  Damit nun hast du aber eine Aufteilung der
Leistung auf 4 x 75 Ω, also -6 dB für jeden dieser Widerstände (zweimal
davon nur zum Verheizen für Anpasszwecke, zweimal das Ausgangssignal).

: Bearbeitet durch Moderator
von Johnny (Gast)


Angehängte Dateien:

Lesenswert?

Sorry wenn es nervt, aber ich kann nicht folgen. Ich habe mal ein Bild 
angehängt, das zeigt wovon ich Rede.

R1 ist die Impedanz der Quelle, R11 und R12 sind die Impedanzen der 
Lasten. R2, R6 und R7 bilden den Splitter, soweit wie ich ihn jetzt mit 
deiner Hilfe verstanden habe (sorry für die blöde Nummerierung). Wenn 
ich jetzt ohmsch zwischen R1 und R7 messe, komme ich auf 37.5 Ω, was man 
natürlich auch "theoretisch" erwarten würde. Wenn ich zwischen R2 und 
R11 bzw. zwischen R6 und R12 messe, bekomme ich - ebenfalls 
erwartungsgemäß - auch 37.5 Ω. Das entspricht mMn ja genau dem Fall, wie 
ich ihn bei einer Verbindung einer 75 Ω Quelle mit einer 75 Ω Last 
erwarte. Beide liegen parallel, also sehe ich zwischen ihnen 37.5 Ω. 
Also denke ich aus meiner naiven Perspektive, dass die Schaltung tut was 
sie soll: an eine 75 Ω Quelle zwei 75 Ω Lasten anschließen, und zwar 
so, dass die beiden Lasten das gleiche tun, was auch eine von ihnen ohne 
Splitter an der Quelle täte. Sehe ich das wenigstens so weit mal richtig 
oder ist da schon was faul? :-)

Danke!

John

von Jörg W. (dl8dtl) (Moderator) Benutzerseite


Lesenswert?

Johnny schrieb:
> Wenn ich jetzt ohmsch zwischen R1 und R7 messe, komme ich auf 37.5 Ω,
> was man natürlich auch "theoretisch" erwarten würde.

OK, ich sehe das Missverständnis: den Port, in den man "hineinguckt",
lässt man natürlich offen.  Wenn du also R1 abklemmst und dann von
R7 nach Masse misst, misst du 75 Ω, d. h. an diesem Port "sieht" der
potenziell an diesem Punkt angeschlossene Generator die korrekte
Last.  Das kannst du nun beliebig für jeden Port wiederholen.

Ja, ansonsten ist das völlig korrekt so.

von Carsten R. (kaffeetante)


Lesenswert?

Johnny schrieb:
> Also sollte doch insgesamt genauso so viel
> Leistung umgesetzt werden wie wenn nur eine Last angeschlossen ist. Wo
> denke ich da falsch? Mir geht es konkret darum, ob/wie man an einen
> bestehenden Ausgang mit mit 75 Ω statt (wie eigentlich vorgesehen) eine
> zwei 75 Ω Lasten anschließen kann, ohne Einschränkungen bei der Funktion
> hinnehmen zu müssen.

Wenn die Signalquelle nur mit 75 Ohm belastet werden soll müssen die 
beiden Lasten kleiner werden oder es muß von irgendwo her Energie 
zugeführt werden. Wenn sich für die Quelle nichts ändern soll, so gibt 
sie die gleiche Energiemenge ab. Diese teilt sich auf beide Lasten auf. 
Das ist doch völlig logisch. Damit über beide parallelen Lasten nicht 
doppelt soviel Energie fließt muß der Fluß gebremst werden. Somit wird 
jede Last fü sich genommen reduziert. Ansonsten bekäme man dopplt soviel 
Energie heraus wie man hineingibt. Das wäre ein Perpetuum Mobile, eine 
physikalische Unmöglichkeit die gegen den Energieerhaltungssatz 
gerichtet wäre.

Die aAlternative wäre eine Art Übersetzer, der eingansseitig wie 75 Ohm 
aussieht und ausgangsseitig zwei mal das gleiche Signal bietet, bzw. 
wenn es symmetrisch ist, einmal das doppelt so starke Signal ausgibt, 
welches sich dann auf beide symmetrische Lasten verteilt. Das wäre dann 
ein Verstärker oder ein Impedanzwandler, die das Signal übernehmen und 
von einer weiteren Energiequelle Energie beziehen um das Signal zu 
verstärken.

von Jens G. (jensig)


Lesenswert?

Vielleicht gefällt Dir meine Veranschaulichung des Wellenwiderstandes, 
die ich mal vor ziemlich genau 4 Jahren zum besten gab (ist ja wieder 
ziemich weit her ... ):
Beitrag "Re: Platine für 3Gbit/s mit eagle planen?"

Antwort schreiben

Die Angabe einer E-Mail-Adresse ist freiwillig. Wenn Sie automatisch per E-Mail über Antworten auf Ihren Beitrag informiert werden möchten, melden Sie sich bitte an.

Wichtige Regeln - erst lesen, dann posten!

  • Groß- und Kleinschreibung verwenden
  • Längeren Sourcecode nicht im Text einfügen, sondern als Dateianhang

Formatierung (mehr Informationen...)

  • [c]C-Code[/c]
  • [code]Code in anderen Sprachen, ASCII-Zeichnungen[/code]
  • [math]Formel in LaTeX-Syntax[/math]
  • [[Titel]] - Link zu Artikel
  • Verweis auf anderen Beitrag einfügen: Rechtsklick auf Beitragstitel,
    "Adresse kopieren", und in den Text einfügen




Bild automatisch verkleinern, falls nötig
Bitte das JPG-Format nur für Fotos und Scans verwenden!
Zeichnungen und Screenshots im PNG- oder
GIF-Format hochladen. Siehe Bildformate.
Hinweis: der ursprüngliche Beitrag ist mehr als 6 Monate alt.
Bitte hier nur auf die ursprüngliche Frage antworten,
für neue Fragen einen neuen Beitrag erstellen.

Mit dem Abschicken bestätigst du, die Nutzungsbedingungen anzuerkennen.