Forum: HF, Funk und Felder Messung Wellenimpedanz von 75Ω Koax falsch


Announcement: there is an English version of this forum on EmbDev.net. Posts you create there will be displayed on Mikrocontroller.net and EmbDev.net.
von Felix U. (ubfx)


Bewertung
0 lesenswert
nicht lesenswert
Guten Abend,

ich habe gerade mal testweise den Leitungswellenwiderstand eines 75 Ω 
Koax messen wollen. Allerdings kriege ich statt 75 Ω immer etwa 150 
heraus.

Gemessen habe ich (mit einem günstigen LC-Meter) die Kapazität von 
Mantel zu Mittelleiter mit offenem Kabel und die Induktivität wenn ich 
Mantel und Mittelleiter auf der anderen Seite kurzschließe.

Herausgekriegt habe ich bei 3 verschiedenen Kabeln verschiedener Längen
1
C1 = 142 pF  L1 = 3,3   uH   Zw1 = sqrt(L1/C1) = 152 Ω
2
C2 = 100 pF  L2 = 2,94  uH   Zw2 = sqrt(L2/C2) = 171 Ω
3
C3 = 269 pF  L3 = 5,737 uH   Zw3 = sqrt(L3/C3) = 146 Ω

Ist meine Messmethode falsch? Ist es Zufall, dass ich etwa die doppelte 
Wellenimpedanz herauskriege?

Für Hinweise wäre ich dankbar,
Viele Grüße

von Hp M. (nachtmix)


Bewertung
1 lesenswert
nicht lesenswert
Felix U. schrieb:
> Ist meine Messmethode falsch?

Wird wohl.
Eine Leitung ist eben kein konzentriertes Bauteil und kann ja nach Länge 
kapazitiv oder induktiv, offen oder Kurzschluß sein.

Solange du aber nicht verrätst, womit du was bei welcher Frequenz 
gemessen hast, ist es müßig darüber zu diskutieren.

: Bearbeitet durch User
von Felix U. (ubfx)


Bewertung
0 lesenswert
nicht lesenswert
Die Messfrequenz des LC Meters betrug 727 kHz für die Induktivität und 
697 kHz für die Kapazität.

Ich dachte bei der großen Wellenlänge im Vergleich zur Kabellänge(2-5m), 
sollte das keine Rolle spielen.

: Bearbeitet durch User
von Hp M. (nachtmix)


Bewertung
1 lesenswert
nicht lesenswert
Schau mal nach, ob der Innenleiter deines Kabels magnetisch ist!
Bei SAT-Kabeln besteht der Innenleiter oft aus verkupfertem Stahl, was 
die HF im GHz-Bereich wegen des Skineffekts ja nicht merkt.

Bei 700kHz allerdings ist die Eindringtiefe evtl. schon größer als die 
Kupferdicke, und dann beeinflusst der Stahlkern mit seinem hohen µ das 
Ergebnis.

von Felix U. (ubfx)


Bewertung
0 lesenswert
nicht lesenswert
Tatsächlich, der Innenleiter ist magnetisch. Hm, ich dachte die 
Wellenimpedanz eines Koax sollte über einige Größenordnungen 
einigermaßen konstant sein.

Hintergrund ist, dass ich den Leitungswiderstand eines 
Breitbandtransformators vermessen will und dachte ich teste es erst mal 
an einer bekannten Impedanz.

Also werde ich wohl für eine sinnvolle Messung eher bei 100 als bei 1 
MHz messen müssen...

von Gerd E. (robberknight)


Bewertung
0 lesenswert
nicht lesenswert
Hast Du ein Oszi und einen einfachen Impulsgenerator aus ein paar 
74er-ICs sowie ein Poti?

Dann probier mal die Impedanz so zu messen wie hier in dem Video 
(2.Teil):
https://www.youtube.com/watch?v=TpIIftvQPFM

von Felix U. (ubfx)


Bewertung
0 lesenswert
nicht lesenswert
Gerd E. schrieb:
> Dann probier mal die Impedanz so zu messen wie hier in dem Video

Das werde ich morgen mal probieren. Ich fürchte nur, dass diese Methode 
sich bei einem Transformator mit sagen wir mal 20cm Leitungslänge nicht 
eignet (ohne teures Equipment). Bei einem Verkürzungsfaktor von 0.8 
würde der Puls gerade mal 1.7ns brauchen, bis er wieder da ist. Das 
dürfte mit einem 1GSps Oszi schon nicht mehr brauchbar zu vermessen 
sein.

von Hp M. (nachtmix)


Bewertung
0 lesenswert
nicht lesenswert
Felix U. schrieb:
> Hintergrund ist, dass ich den Leitungswiderstand eines
> Breitbandtransformators vermessen will und dachte ich teste es erst mal
> an einer bekannten Impedanz.

Dann nimm doch einfach ein "richtiges"  Kabel.
Die meisten mit BNC-Steckern ausgestatteten  Kabel sind geignet, haben 
aber oft ein RG-58 mit massiver PE-Isolation und  50 Ohm.

An älteren Meßgeräten findet man evtl auch noch BNC mit 75 Ohm und 
RG-59.

In den VGA-Kabeln der alten CRT-Monitore befinden sich drei dünne 
Koaxkabel mit 75 Ohm für die die drei Grundfarben. Diese Kabel dürfen 
von 60Hz bis zu ca. 200MHz keine Absonderlichkeiten aufweisen.

von Felix U. (ubfx)


Bewertung
0 lesenswert
nicht lesenswert
Hp M. schrieb:

> Dann nimm doch einfach ein "richtiges"  Kabel.
> Die meisten mit BNC-Steckern ausgestatteten  Kabel sind geignet, haben
> aber oft ein RG-58 mit massiver PE-Isolation und  50 Ohm.

Das Problem ist, dass das ein Balun-Transformer für eine 
Dipolempfangsantenne werden soll, der auf einem Ringkern mit 8mm 
Innendurchmesser passen muss. "Normale" Koaxe fallen da leider schon mal 
raus.

> In den VGA-Kabeln der alten CRT-Monitore befinden sich drei dünne
> Koaxkabel mit 75 Ohm für die die drei Grundfarben.

Das wäre dann vielleicht noch eine Option, ich fürchte aber auf dem 
kleinen Kern wegen dem Biegeradius auch nicht möglich.
Wenn sich die Wellenimpedanz nicht ohne weiteres vermessen lässt, werde 
ich den Balun einfach "pi mal daumen" wickeln, das wird ja sowieso 
meistens gemacht. Wäre nur schön gewesen, den Wellenwiderstand 
vielleicht noch optimieren zu können.

Beitrag #5172793 wurde vom Autor gelöscht.
Beitrag #5172800 wurde vom Autor gelöscht.
von Ralph B. (rberres)


Bewertung
0 lesenswert
nicht lesenswert
Felix U. schrieb:
> Ist meine Messmethode falsch? Ist es Zufall, dass ich etwa die doppelte
> Wellenimpedanz herauskriege?

Das L must du zwischen Kabelanfang und Kabelende messen den Schirm dabei 
komplett unbeschaltet lassen.

Ralph Berres

von Hp M. (nachtmix)


Bewertung
0 lesenswert
nicht lesenswert
Ralph B. schrieb:
> Das L must du zwischen Kabelanfang und Kabelende messen den Schirm dabei
> komplett unbeschaltet lassen.

Wo hast du das denn her???

Wenn er die Strippe aufwickelt, bekommt er einen komplett anderen Wert 
für den Wellenwiderstand?

von Ralph B. (rberres)


Bewertung
0 lesenswert
nicht lesenswert
Hp M. schrieb:
> Wenn er die Strippe aufwickelt, bekommt er einen komplett anderen Wert
> für den Wellenwiderstand?

Er will die Induktivität / meter wissen genauso wie die Kapazität /m

Also wird man nicht an einer 100m Rolle messen.

Jedenfalls kabel am ende kurzschließen und am Anfang zwischen 
innenleiter und Abschirmung die Induktivität messen funktioniert 
garantiert auch nicht.

Ralph Berres

von npn (Gast)


Bewertung
0 lesenswert
nicht lesenswert
Ralph B. schrieb:
> Jedenfalls kabel am ende kurzschließen und am Anfang zwischen
> innenleiter und Abschirmung die Induktivität messen funktioniert
> garantiert auch nicht.

Genau das hat bei mir immer funktioniert. Und zwar bei Koax- als auch 
bei Zweidraht-Leitungen. Kapazität bei offenem Ende messen und 
Induktivität bei Kurzschluss am anderen Ende.
Gemessen habe ich mit dem Voltcraft "LCR 4080", das hat zwei 
verschiedene Mess-Frequenzen: 100Hz und 1kHz. Damit kam immer der 
richtige Wert raus, egal bei welchem Kabel und egal wie lang. Von 0,5m 
bis 250m habe ich schon gemessen. Beim gleichen Kabeltyp kam unabhängig 
von der Länge immer die richtige Impedanz raus...

von Ralph B. (rberres)


Bewertung
0 lesenswert
nicht lesenswert
npn schrieb:
> Genau das hat bei mir immer funktioniert.

Hast du dir mal den Drehsinn der Magnetfelder für Hin und Rückleitung 
angeschaut? wenn dein kurzgeschlossenes Koaxkabel mit Strom durchflossen 
wird?

Ralph Berres

von npn (Gast)


Bewertung
0 lesenswert
nicht lesenswert
Felix U. schrieb:
> Die Messfrequenz des LC Meters betrug 727 kHz für die Induktivität und
> 697 kHz für die Kapazität.

Ich könnte mir vorstellen, daß sich bei diesen Messfrequenzen (ca. 
700kHz) schon Resonanzerscheinungen auf dem Kabel bilden. Wie ich oben 
schrieb, bei 100Hz bzw. 1kHz mit meiner Messbrücke funktioniert die 
Methode tadellos. Vielleicht kannst du dir irgendwo eine Messbrücke 
leihen, die kleinere Messfrequenzen erlaubt?

von npn (Gast)


Bewertung
0 lesenswert
nicht lesenswert
Ralph B. schrieb:
> npn schrieb:
>> Genau das hat bei mir immer funktioniert.
>
> Hast du dir mal den Drehsinn der Magnetfelder für Hin und Rückleitung
> angeschaut? wenn dein kurzgeschlossenes Koaxkabel mit Strom durchflossen
> wird?
>
> Ralph Berres

Deswegen ist ja meine Vermutung, daß der Messfehler durch die hohe 
Messfrequenz passiert.
Und zwischen 100Hz und 700kHz ist schon ein kleiner Unterschied :-)

Ich kann nur aus eigener Erfahrung berichten, daß es mit 100Hz 
funktioniert. Bei Gelegenheit teste ich mal den Unterschied zwischen 
100Hz und 1kHz. Aber wenn ich mich richtig erinnere, war der nicht 
spürbar. Ich könnte mir aber vorstellen, daß sich 700kHz schon 
deutlicher auswirken...

von Ralph B. (rberres)


Bewertung
0 lesenswert
nicht lesenswert
npn schrieb:
> Deswegen ist ja meine Vermutung, daß der Messfehler durch die hohe
> Messfrequenz passiert.
> Und zwischen 100Hz und 700kHz ist schon ein kleiner Unterschied :-)
>
> Ich kann nur aus eigener Erfahrung berichten, daß es mit 100Hz
> funktioniert. Bei Gelegenheit teste ich mal den Unterschied zwischen
> 100Hz und 1kHz. Aber wenn ich mich richtig erinnere, war der nicht
> spürbar. Ich könnte mir aber vorstellen, daß sich 700kHz schon
> deutlicher auswirken...

Koaxkabel werden im HF Bereich aber in der Regel bei deutlich höheren 
Frequenzen als 100Hz betrieben. Der Wellenwiderstand eines Kabels stellt 
sich eh nur bei einer Frequenz von mehr als ca. 1MHz ein.

Im übrigen Die Magnetfelder von Hin und Rückleitung heben sich als Summe 
weitgehend auf. Somit auch die Induktivität. Goggle mal nach bifilare 
gewickelte Widerstände.

Insofern ist deine Messmethode Unsinn.

Ralph Berres

von npn (Gast)


Bewertung
0 lesenswert
nicht lesenswert
Ralph B. schrieb:
> Insofern ist deine Messmethode Unsinn.

Da verstehe ich aber nicht, warum ich unabhängig von der Kabel-Länge 
und unabhängig vom Kabeltyp stets das richtige Ergebnis bekomme. 
Kannst du mir das erklären? Ich möchte es gern verstehen, warum bei 
einer unsinnigen_ Messmethode das _richtige Ergebnis rauskommt...

P.S.: im übrigen wird diese Methode überall im Internet verwendet und 
auch erläutert: 
https://www.elektronik-kompendium.de/sites/grd/0301036.htm

von Ralph B. (rberres)


Bewertung
0 lesenswert
nicht lesenswert
Dann zeichne dir doch mal den Drehsinn der Magnetfelder für Hin und 
Rückleitung auf und addiere die beiden Magnetfelder mal.

Nicht alles was im Internet veröffentlicht ist, muss zwangsläufig 
richtig sein. Eine Unsitte ist auch das sich vermeintliche Erkenntnisse 
von Internetseite zu Internetseite durch kopieren fortpflanzt.

Was du da misst kann ich von hier aus nicht nachvollziehen.


Es gibt aber noch andere Möglichkeiten den Wellenwiderstand eines Kabels 
zu bestimmen. Wenn man keinen so schnellen Oszillograf hat dann ist ein 
entsprechend langes Kabel zielführend. Die am Ende reflektierten Impulse 
werden zu Null, wenn das Ende des Kabels mit dem Wellenwiderstand des 
Kabels abgeschlossen wird. So mache ich das immer.

Ralph Berres

von DH1AKF W. (wolfgang_kiefer) Benutzerseite


Bewertung
0 lesenswert
nicht lesenswert
Ralph B. schrieb:
> Im übrigen: Die Magnetfelder von Hin und Rückleitung heben sich als Summe
> weitgehend auf. Somit auch die Induktivität.

Das ist falsch! Dann wäre ja die gemessene Induktivität Null.

Guck mal in die Wikipedia. Dort wird genau dieses Messverfahren 
beschrieben, so wie es Felix geschildert hat.
Man braucht aber genaue, kalibrierte Messgeräte...
Ich habe zur Probe mal ein Teflon- Koaxkabel (50 Ohm) mit einem L/C- 
Messgerät vermessen. - Es kam als Ergebnis 67 Ohm heraus, also 30% 
Messfehler.

Das Messprinzip beruht auf Verstimmung eines Langwellen- Oszillators 
durch die parallel geschaltete zu messende Kapazität, bzw. in Reihe 
geschaltete Induktivität. Ich muss also noch kalibrieren...

: Bearbeitet durch User
von npn (Gast)


Bewertung
0 lesenswert
nicht lesenswert
DH1AKF K. schrieb:
> Ich habe zur Probe mal ein Teflon- Koaxkabel (50 Ohm) mit einem L/C-
> Messgerät vermessen. - Es kam als Ergebnis 67 Ohm heraus, also 30%
> Messfehler.

Da ich ein neugieriger Mensch bin, mal eine Frage: Wie hoch ist die 
Messfrequenz deines LC-Messgerätes?
Ich denke doch (auch wenn Ralph das als "Unsinn" bezeichnet), daß die 
Messfrequenz hier eine entscheidende Rolle spielt. Je höher die 
Messfrequenz, desto mehr wirken sich Resonanzerscheinungen aus. Wenn ich 
bei 100Hz messe, ist das was anderes als beim TO, der mit 700kHz mißt!

von Stinktier (Gast)


Bewertung
0 lesenswert
nicht lesenswert
Ralph B. schrieb:
> Felix U. schrieb:
>> Ist meine Messmethode falsch? Ist es Zufall, dass ich etwa die doppelte
>> Wellenimpedanz herauskriege?
>
> Das L must du zwischen Kabelanfang und Kabelende messen den Schirm dabei
> komplett unbeschaltet lassen.
>
> Ralph Berres

Das kann so nicht stimmen. Wenn ich den Aussenleiter nicht beschalte 
dann kann ich mir das Ergebnis mehr oder weniger frei wählen - abhängig 
von der aufgespannten Leiterschleife aus "Prüfling" und Rückleiter zum 
Messgerät. Wenn ich eine grosse Fläche mit den beiden aufspanne wird 
meine gemessene Induktivität dann grösser, hat aber mit der Induktivität 
des Kabels nichts mehr zu tun.

Allerdings dachte ich dass Ralph Berres ein ziehmlicher HF-Guru ist - 
aber ohne eine ausführliche Begründung glaub ich das nicht.

Die Möglichkeit mit Kurschluss am Ende und dann am Anfang messen sollte 
aber passen.

Dass du einen höheren Wert ermittelst kann in der Tat damit zusammen 
hängen, dass dein Mittelleiter aus Stahl ist und das Kabel bei hohen 
Frequenzen bedingt durch den Skineffekt nur auf der Oberfläche leitet. 
Bei niederen Frequenzen verteilt sich die Stromdichte dann 
gleichmässiger über den Mittelleiter.

https://de.wikipedia.org/wiki/Induktivit%C3%A4t#Induktivit.C3.A4t_einer_Ringspule

Abschnitt "innere Induktivität". Beachte dabei, dass die Formel für die 
innere Induktivität die relative Permeabilität des Leiters enthält 
welche bei magnetischen Materialien natürlich hoch ist. Was hat dein 
Kabel für Abmessungen und wie lange ist das Teststück?

von Ralph B. (rberres)


Bewertung
0 lesenswert
nicht lesenswert
Stinktier schrieb:
> Wenn ich eine grosse Fläche mit den beiden aufspanne wird
> meine gemessene Induktivität dann grösser, hat aber mit der Induktivität
> des Kabels nichts mehr zu tun.

Das hat mich jetzt stutzig gemacht.

https://de.wikipedia.org/wiki/Induktivit%C3%A4t#In...
Da steht

Zur Bestimmung der Induktivität eines Koaxialkabels der Länge l 
(sogenannter Induktivitätsbelag) sind bei niedrigen Frequenzen die 
inneren Induktivitäten des inneren Leiters Lii und des äußeren Leiters 
Lia zu berücksichtigen. Hauptsächlich wirkt jedoch die Induktivität La 
des konzentrischen Raumes zwischen den beiden Leitern. Die gesamte 
Induktivität einer koaxialen Leitung der Länge l ergibt sich aus der 
Summe der einzelnen Teilinduktivitäten:

    L = L a + L i i + L i a {\displaystyle \;L=L_{a}+L_{ii}+L_{ia}\,} 
\;L=L_{a}+L_{{ii}}+L_{{ia}}\,.

wenn es tatsächlich so ist das sich innerhalb des Koaxkabels die 
magnetischen Felder von Außen und Innenleiter nicht aufheben sondern 
addieren, wenn man das Kabelende kurzschließt, dann müsste man aber 
zumindest die doppelte Induktivität nehmen.

Vielleicht lässt sich aber auch wegen der aufgespannten Fläche die 
Leitungsinduktivität überhaupt nicht direkt messen.


Ganz glauben kann ich das immer noch nicht. Für mich ist immer noch 
unklar, ob diese Formel gültig ist, wenn beide Leiter in gleiche 
Stromrichtung betrieben wird oder entgegengesetzte Stromrichtung.

zugegebenermasen habe ich den Wellenwiderstand bisher immer nach der TDR 
Methode gemessen, die ist ziemlich genau und mit genügend langen Kabel 
geht das auch mit einen normalen Rechteckgenerator und einen 20MHz 
Oszillografen.

Ralph Berres

von Stinktier (Gast)


Bewertung
1 lesenswert
nicht lesenswert
Ralph B. schrieb:
> Stinktier schrieb:
>> Wenn ich eine grosse Fläche mit den beiden aufspanne wird
>> meine gemessene Induktivität dann grösser, hat aber mit der Induktivität
>> des Kabels nichts mehr zu tun.
>
> Das hat mich jetzt stutzig gemacht.
>
> https://de.wikipedia.org/wiki/Induktivit%C3%A4t#In...
> Da steht
>
> Zur Bestimmung der Induktivität eines Koaxialkabels der Länge l
> (sogenannter Induktivitätsbelag) sind bei niedrigen Frequenzen die
> inneren Induktivitäten des inneren Leiters Lii und des äußeren Leiters
> Lia zu berücksichtigen. Hauptsächlich wirkt jedoch die Induktivität La
> des konzentrischen Raumes zwischen den beiden Leitern. Die gesamte
> Induktivität einer koaxialen Leitung der Länge l ergibt sich aus der
> Summe der einzelnen Teilinduktivitäten:
>
>     L = L a + L i i + L i a {\displaystyle \;L=L_{a}+L_{ii}+L_{ia}\,}
> \;L=L_{a}+L_{{ii}}+L_{{ia}}\,.
>
> wenn es tatsächlich so ist das sich innerhalb des Koaxkabels die
> magnetischen Felder von Außen und Innenleiter nicht aufheben sondern
> addieren, wenn man das Kabelende kurzschließt, dann müsste man aber
> zumindest die doppelte Induktivität nehmen.

Weder noch. Das H-Feld im inneren des Koaxialkabels hängt nur vom Strom 
im Mittelleiter ab. Der Strom im Aussenleiter trägt nicht dazu bei. Das 
folgt direkt aus den maxwellschen Gleichungen. Extrembeispiel: Wenn der 
Innenleiter stromlos ist, der Aussenleiter aber nicht, dann hast du 
innerhalb des Kabels trotzdem einen feldfreien Raum.
Das ganze gilt natürlich nur bei perfekt rotationssymmetrischen 
Anordnungen.

Ausserhalb des Kabel heben sich die Felder natürlich auf. Einfach 
berechnen kann man das mit dem amperschen Gesetz.

Wenn man die Messung so macht wie von dir beschrieben (Aussenleiter 
stromlos lassen), dann baut man nichts anderes als eine Leiterschleife 
aus dem Innenleiter. Der Aussenleiter hat dann auf die Messung keinen 
Einfluss, wohl aber die Gesamtanordnung aus Innenleiter und Messaufbau 
rundum. Man misst dann die Induktivität der Messanordnung.



> Vielleicht lässt sich aber auch wegen der aufgespannten Fläche die
> Leitungsinduktivität überhaupt nicht direkt messen.
>
> Ganz glauben kann ich das immer noch nicht. Für mich ist immer noch
> unklar, ob diese Formel gültig ist, wenn beide Leiter in gleiche
> Stromrichtung betrieben wird oder entgegengesetzte Stromrichtung.

Wenn beide Leiter in die gleiche Richtung Strom führen dann liegt die 
Indukvitität des Kabels nicht mehr in deinem Strompfad.

Theoretisch kann die Induktivität einer allgemeinen Anordnung nur dann 
bestimmt werden, wenn man eine geschlossene Schleife hat, also Anfangs 
und Endpunkt zusammenfallen. Sehr theoretisch könnte man also die 
Induktivität nie messen, da ja jedes Messgerät und jedes Anordnung eine 
physikalische Ausdehnung haben. Praktisch geht das natürlich meistens, 
da "ein Teil der Schleife" überwiegt und die parasitäre Induktivität des 
Aufbaus vernachlässigbar ist.

Wenn deine Ströme in die gleiche Richtung gehen, dann müssen sie 
irgendwo ausserhalb deines Kabels zur Quelle zurückfliessen. Dieses 
"Ausserhalb" bestimmt dann deine Induktivität, die Dimensionen des 
Kabels fallen raus bzw. das Kabel könntest du durch ein massives 
Metallstück ersetzen ohne dass sich etwas ändert.

von Martin O. (ossi-2)


Bewertung
0 lesenswert
nicht lesenswert
Wäre mal interessant das in Spice zu simulieren, dann muss man sich
nur überlegen, wie man die Induktivität messen will. Leitungen gibts
in Spice ja.

von Stinktier (Gast)


Bewertung
0 lesenswert
nicht lesenswert
Sowas kannst du de facto nicht in Spice simulieren. Dazu musst du eine 
Feldsimulation machen. Wenn du das in Spice simulieren willst benötigst 
du ja ein Simulationsmodell bzw. die Parameter. Und genau um die geht es 
ja.

von Bernhard S. (gmb)


Bewertung
0 lesenswert
nicht lesenswert
Stinktier schrieb:
> Sowas kannst du de facto nicht in Spice simulieren.

Die Feinheiten mit magnetischem Innenleiter oder sowas kann man so 
sicher nicht simulieren, aber den Rest mit L und C messen und ob bei ein 
paar Metern Kabellänge 700 kHz schon zuviel sind, das könnte man alles 
simulieren.

von Stinktier (Gast)


Bewertung
0 lesenswert
nicht lesenswert
Bernhard S. schrieb:
> Die Feinheiten mit magnetischem Innenleiter oder sowas kann man so
> sicher nicht simulieren, aber den Rest mit L und C messen und ob bei ein
> paar Metern Kabellänge 700 kHz schon zuviel sind, das könnte man alles
> simulieren.

Ich kenne das Spicemodell für Kabel nicht, aber es ist sicher nicht 
möglich herauszufinden, wie sich die gemessene Induktivität verhält wenn 
man z.B. die Methode von Ralph Berres verwendet. Diese Dinge hängen 
stark vom Aufbau ab und diese Information hat eine Spice Simulation 
nicht.

Man muss bei Induktivitäten aufpassen, dass man dran denkt dass 
Induktivität nur für geschlossene Schleifen definiert ist. Sobald die 
Schleife der Messung selbst bestimmend wird, kommt man mit dem Modell 
der Spule als Bauelement mit zwei Anschlüssen nirgends mehr hin.

von Possetitjel (Gast)


Bewertung
0 lesenswert
nicht lesenswert
Ralph B. schrieb:

> wenn es tatsächlich so ist das sich innerhalb des
> Koaxkabels die magnetischen Felder von Außen und
> Innenleiter nicht aufheben sondern addieren, wenn
> man das Kabelende kurzschließt,

Das ist meiner Meinung nach so korrekt.

> dann müsste man aber zumindest die doppelte Induktivität
> nehmen.

Wieso "doppelt nehmen"?

Das ist doch genau das, was auch im realen Betrieb mit
der HF passiert: Der Strom fließt im Innenleiter hin und
im Außenleiter zurück.
Das Magnetfeld, das dabei entsteht, ist genau das, das
halt im realen Betrieb entsteht.

> Vielleicht lässt sich aber auch wegen der aufgespannten
> Fläche die Leitungsinduktivität überhaupt nicht direkt
> messen.

???
Induktivität ist immer "magnetfelddurchsetzte Fläche".

Beim geraden Draht mit "weit entferntem Rückleiter" ist
die umschlossene Fläche groß, also auch die Induktivität.
Je näher der Rückleiter dem Hinleiter kommt, desto kleiner
ist die Fläche, in der sich die Felder addieren -- also
wird auch die Induktivität immer kleiner.

> Ganz glauben kann ich das immer noch nicht. Für mich ist
> immer noch unklar, ob diese Formel gültig ist, wenn beide
> Leiter in gleiche Stromrichtung betrieben wird oder
> entgegengesetzte Stromrichtung.

Sie gilt in beiden Fällen -- nur sind im einen Fall die
Vorzeichen gleich, im anderen unterschiedlich.

Und bei identischer Stromrichtung ist die Anordnung noch
unvollständig, weil nicht ständig irgendwo Strom hin-, aber
nie welcher zurückfließen kann. Das verbietet Kirchhoff.
Der Rückleiter fehlt also noch.

> zugegebenermasen habe ich den Wellenwiderstand bisher immer
> nach der TDR Methode gemessen, die ist ziemlich genau und
> mit genügend langen Kabel geht das auch mit einen normalen
> Rechteckgenerator und einen 20MHz Oszillografen.

Die Methode über Kapazitäts- und Induktivitätsbelag stammt
ja gerade aus der Zeit, wo noch NICHT jeder einen 100MHz-Oszi
auf dem Küchentisch stehen hatte.

von Felix U. (ubfx)


Bewertung
0 lesenswert
nicht lesenswert
Hallo,

danke erst mal für eure zahlreichen Antworten.

npn schrieb:
> bei 100Hz bzw. 1kHz mit meiner Messbrücke funktioniert die
> Methode tadellos. Vielleicht kannst du dir irgendwo eine Messbrücke
> leihen, die kleinere Messfrequenzen erlaubt?

Das werde ich wohl als nächstes probieren. Allerdings wundert es mich 
schon, dass ein HF-Kabel solche Resonanzeffekte gerade bei höheren 
Frequenzen zeigt, die das Ergebnis verzerren. Man sollte ja meinen es 
würde gerade da besser funktionieren.

Ich werde auch mal sehen ob ich ein hochwertigeres Koax kriegen kann, 
das vielleicht nur aus Kupfer besteht, um daran auch nochmal mit meinem 
Messgerät zu testen.

Könnte man den Wellenwiderstand ohne Weiteres mit einem VNA messen?

von Hp M. (nachtmix)


Bewertung
0 lesenswert
nicht lesenswert
Felix U. schrieb:
> Könnte man den Wellenwiderstand ohne Weiteres mit einem VNA messen?

Ja, sogar sehr gut.
Allerdings wirst du auch da bei tiefen Frequenzen die frequenzabhängige 
Erhöhung von Z0 wegen der Staku-Seele deines Kabels sehen.

Übrigens hat man früher bei Telefonkabeln auf ähnliche Weise die 
Induktivität absichtlich erhöht. Man kann so die Dämpfung auf Kosten der 
Bandbreite verringern.
Such mal nach Pupinisierung und Krarupkabeln!

: Bearbeitet durch User
von Uwe M. (uwe_mettmann)


Bewertung
0 lesenswert
nicht lesenswert
Hallo Felix,

weil nach meiner Meinung nach dein Messverfahren funktionierten muss, 
habe ich deine Messung auch durchgeführt. Allerdings habe ich auf die 
Schnelle kein 75 Ohm Kabel gefunden, weshalb ich dann ein 2 m langes 50 
Ohm Kabel genommen habe. Um die Messung vergleichbar zu halten, habe ich 
700 kHz als Messfrequenz gewählt. Der Innenleiter ist aus Kupfer, Silber 
beschichtet.

Gemessen habe ich 204 pF und 582 nF und somit habe ich einen 
Wellenwiderstand von 53 pF erhalten, passt also.

Nun, dann habe ich im Thread gelesen, dass wohl die Vermutung besteht, 
dass diese Messung nicht bei einem Staku-Innenleiter nicht funktionieren 
soll. Daher habe ich mein  TV-Antennenkabel abgezogen und vermessen (5 m 
Preisner SK 2000 plus).

Die Messwerte sind 1,83 µH und 325 pF, somit ein Wellenwiderstand von 
exakt 75 Ohm, passt also auch.

Wie hast du das Koax-Kabel an das LCR-Messgerät angeschlossen? Mit 
Verbindungsleitung geht das schlecht, weil die Induktivität der 
Leitungen das Ergebnis stark verfälscht.

Auch bezweifele ich, dass du mit der LC-Messmethode den Wellenwiderstand 
eines Übertragers messen kannst. Das ist aber gefühlsmäßig, denn darüber 
habe ich mir bisher keine Gedanken gemacht.


Gruß

Uwe

von Hp M. (nachtmix)


Bewertung
0 lesenswert
nicht lesenswert
Uwe M. schrieb:
> Daher habe ich mein  TV-Antennenkabel abgezogen und vermessen (5 m
> Preisner SK 2000 plus).

Hast du mit einem Magneten geprüft, ob der Innenleiter aus Stahl ist?

Das ist ja längst nicht überall der Fall und insbesondere nicht bei 
flexiblen Leitungen, deren Seele meist aus Litze besteht.

von Uwe M. (uwe_mettmann)


Bewertung
0 lesenswert
nicht lesenswert
Hp M. schrieb:
> Hast du mit einem Magneten geprüft, ob der Innenleiter aus Stahl ist?
>
> Das ist ja längst nicht überall der Fall und insbesondere nicht bei
> flexiblen Leitungen, deren Seele meist aus Litze besteht.

Ich habe gerade im Datenblatt nachgeschaut, ist ein Kupferinnenleiter. 
Weil es ein massiver Innenleiter ist, dachte ich an Staku.

Da ich keinen Magneten hier habe, kann ich andere Antennenkabel, die ich 
hier habe, nicht testen, zumal ich auch nicht die Stecker abschneiden 
möchte.


Gruß

Uwe

von Martin O. (ossi-2)


Angehängte Dateien:

Bewertung
0 lesenswert
nicht lesenswert
Belden gibt für RG58U alle Daten, insbes. Kapazitätsbelag und 
Induktivitätsbelag an. Dass müsste sich in etwa bei Messungen ergeben.

Wenn man das LC-Ersatzschaltbild betrachtet (vgl. Anhang 
Transmission_Line_WP_Final_0416.pdf ), sieht man, dass man bei niedriger 
Frequenz (damit die Parallel Cs nichts machen) Am Eingang die 
Induktivität misst, wenn man den Ausgang kurzschliesst. Die Messmethode 
ist also in Ordnung.

von Felix U. (ubfx)


Angehängte Dateien:

Bewertung
0 lesenswert
nicht lesenswert
Uwe M. schrieb:
> Wie hast du das Koax-Kabel an das LCR-Messgerät angeschlossen? Mit
> Verbindungsleitung geht das schlecht, weil die Induktivität der
> Leitungen das Ergebnis stark verfälscht.

Das Teil hat relativ kurze Klemmen und wird vor der Messung auch noch 
genullt um den Einfluss der Klemmen nicht drinzuhaben. Da das Teil 
ziemlich günstig war, erwarte ich auch keine große Genauigkeit, 
allerdings müsste es bei meinen Abweichungen ja schon um den Faktor 4 
danebenliegen, und das glaube ich nicht.

Ich habe mir einen VNA besorgt, eine S11 Messung mit offenem Kabel 
gemacht, daraus ein Zeitsignal mit der Step DFT Funktion berechnen 
lassen und |Z| angezeigt. Heraus kam ein Wert von etwa 92 Ohm, das Bild 
habe ich angehängt.

Bin jetzt etwas ratlos, wahrscheinlich habe ich das Teil falsch bedient, 
denn auf dem Kabel steht "3C-2V coaxial cable" was laut google 75 Ohm 
haben müsste.

von Uwe M. (uwe_mettmann)


Bewertung
0 lesenswert
nicht lesenswert
Felix U. schrieb:
> Das Teil hat relativ kurze Klemmen und wird vor der Messung auch noch
> genullt um den Einfluss der Klemmen nicht drinzuhaben.

Hallo Felix,

was zeigt denn das Teil für eine Induktivität an, wenn du die Klemmen 
kurzschließt?

Was zeigt das Teil für eine Kapazität an, wenn du die Klemmen offen 
lässt?


> Bin jetzt etwas ratlos, wahrscheinlich habe ich das Teil falsch bedient,
> denn auf dem Kabel steht "3C-2V coaxial cable" was laut google 75 Ohm
> haben müsste.

Dann schließe das Kabel mit 75 Ohm am Ende mal ab und wiederhole die 
Messung mit dem VNA. Dann müsste die obere Kurve eine waagerechte Gerade 
sein. Dann weißt du wenigstens, ob das Kabel tatsächlich 75 Ohm hat. 
Kann der VNA auch ein Smith-Diagramm anzeigen? Wenn die Bezugsimpedanz 
des VNA 75 Ohm ist, müsste im Smith-Diagramm einen Punkt oder kleiner 
Kreis bei reell 1,5 zu sehen sein. Passt das alles nicht, dann schließe 
den 75 Ohm Widerstand direkt an die Messbuchse des VNA an.

Zum Abschließen mit 75 Ohm kannst du z.B. einen SMD-Widerstand direkt 
ans Kabelende löten. Klar, alles so kurz wie möglich. Alternativ 
montierst du einen F-Stecker an das Kabel. An den Stecker schraubst du 
dann einen Verbinder F-Buchse auf F-Buchse und auf die offene Seite des 
F-Verbinders kommt dann ein F-75 Ohm Abschlusswiderstand.


Gruß

Uwe

von Felix U.nterwegs (Gast)


Bewertung
0 lesenswert
nicht lesenswert
Hallo Uwe,

Uwe M. schrieb:
> was zeigt denn das Teil für eine Induktivität an, wenn du die Klemmen
> kurzschließt?
>
> Was zeigt das Teil für eine Kapazität an, wenn du die Klemmen offen
> lässt?

Vor dem Kalibrieren ist das - je nach Temperatur - unterschiedlich. Ich 
schließe dann ein mal die Klemmen kurz und "nulle" das Gerät, dann zeigt 
es dementsprechend auch 0 an. Für die Kapazität nulle ich es dann mit 
offenen Klemmen.

Uwe M. schrieb:
> Dann schließe das Kabel mit 75 Ohm am Ende mal ab und wiederhole die
> Messung mit dem VNA. Dann müsste die obere Kurve eine waagerechte Gerade
> sein. Dann weißt du wenigstens, ob das Kabel tatsächlich 75 Ohm hat.
Ich hatte das sowohl mit 50 als auch mit 68 Ohm versucht und die 
Reflexionsmessung war weiterhin sehr wellig. Ich dachte dann es muss 
einen anderen Grund haben und habe mir nicht mehr die Mühe gemacht, es 
mit genau 75 zu versuchen.

> Kann der VNA auch ein Smith-Diagramm anzeigen? Wenn die Bezugsimpedanz
> des VNA 75 Ohm ist, müsste im Smith-Diagramm einen Punkt oder kleiner
> Kreis bei reell 1,5 zu sehen sein.
Ja kann er. Die Bezugsimpedanz ist 50 Ohm, aber ich denke, das meintest 
du ja auch.

> Passt das alles nicht, dann schließe
> den 75 Ohm Widerstand direkt an die Messbuchse des VNA an.
Das werde ich dann am Montag mit dem VNA testen.

Eigentlich müsste damit allerdings mit unabgeschlossenem Kabelende auch 
eine sehr gute Wellenimpedanzmessung möglich sein. Scheinbar rechnet er 
dazu die Frequenzantwort über eine inverse FFT in eine Sprungantwort im 
Zeitbereich um, und das ist dann im Prinzip genau das gleiche wie die 
Methode mit dem Impulsgenerator. Hier [1] auf Seite 199 wird das mit 3 
verschiedenen Coaxstücken hintereinander gemacht. Leider sieht mein 
Ergebnis ja ganz anders aus.

Gruß, Felix
[1] http://sdr-kits.net/DG8SAQ/VNWA/VNWA_HELP.pdf

von Hp M. (nachtmix)


Bewertung
0 lesenswert
nicht lesenswert
Felix U. schrieb:
> auf dem Kabel steht "3C-2V coaxial cable" was laut google 75 Ohm
> haben müsste

Das wird stimmen, denn 75 Ohm ist für Empfangsantennen üblich.

Felix U. schrieb:
> Bin jetzt etwas ratlos, wahrscheinlich habe ich das Teil falsch bedient,

Wahrscheinlich nicht nur das, sondern du hast auch Probleme mit 
Übergangswiderständen.
Theoretisch sollte die Amplitude der reflektierten Welle ja fast 
konstant sein, mit allmählichem Abfall zu hohen Frequenzen hin.
Lediglich die Phase ändert sich je nach Leitungslänge mehr oder weniger 
schnell mit der Frequenz.
Die Phaseninformation wäre im Smith-Diagramm enthalten gewesen, und dann 
hätte die Grafik wie eine Spirale aussehen sollen.

Auf die Übergangswiderstände komme ich, weil der Marker1 bei 11,2MHz und 
Marker3 bei 31,7MHz ein S11 von mehr als 3dB anzeigt.
Das bedeutet, dass mehr als die halbe Leistung nicht reflektiert wurde, 
sondern verschwunden ist!
So schlecht kann das Kabel bei der niedrigen Frequenz eigentlich gar 
nicht sein, aber es ergibt einen Sinn, wenn man einen  Serienwiderstand 
von etwa 68 Ohm annimmt und das λ/4 lange Kabel als Kurzschluß 
betrachtet.
11,2MHz entsprechen dann einer elektrischen Länge des Kabels von 6,70m.
Mechanisch wären das ca. 5,50 m bei einem Dielektrikum aus geschäumten 
PE oder 4,20m bei massivem PE.
Stimmts?

Ganz entsprechend treten bei Marker2, wo das Kabel einen sehr 
hochohmigen Resonator darstellt, geringere Verluste an dem 
Übergangswiderstand auf.
Hier hat bei 22,4MHz die rücklaufende Welle eine Amplitude von 90% der 
hinlaufenden, und entsprechend gehen nur 20% der Leistung verloren.
Aber auch daran wird zu einem guten Teil der Übergangswiderstand schuld 
sein.

Ich ahne, dass du das Kabel mittels der in der Abschirmung vorhandenen 
schlecht leitenden metallisierten Kunststofffolie "geerdet" hast.(?)




Übrigens kannst du den Wellenwiderstand für höhere Frequenzen auch nur 
aus einer niederfrequenten Kapazitätsmessung oder den mechanischen 
Abmessungen ableiten, da die Dielektrizitätszahlen für geschäumtes PE 
(1,5) oder massives PE (2,3) hinreichend genau bekannt sind.
Solange der Skineffekt einen Beteiligung des Stahlkerns verhindert, 
kannst du ruhigen Gewissens µ_r=1 annehmen.
Der Rest ergibts sich dann aus der Formel für den Zylinderkondensator, 
die dir  das Verhältnis von Aussendurchmesser zu Innendurchmesser 
liefert, und der Formel für Koaxkabel, die aus dem Durchmesserverhältnis 
den Wellenwiderstand berechnet.

von DH1AKF W. (wolfgang_kiefer) Benutzerseite


Bewertung
0 lesenswert
nicht lesenswert
Hp M. schrieb:
> weil der Marker1 bei 11,2MHz und
> Marker3 bei 31,7MHz ein S11 von mehr als 3dB anzeigt.
> Das bedeutet, dass mehr als die halbe Leistung nicht reflektiert wurde,
> sondern verschwunden ist!
> So schlecht kann das Kabel bei der niedrigen Frequenz eigentlich gar
> nicht sein, aber es ergibt einen Sinn, wenn man einen  Serienwiderstand
> von etwa 68 Ohm annimmt und das λ/4 lange Kabel als Kurzschluß
> betrachtet.

Ich komme bei Auswertung des Diagramms zu ganz anderen Schlüssen!
- Die niedrigste Viertelwellen- Resonanz des offenen Kabels ergibt bei 
Berücksichtigung des Verkürzungsfaktors 0,85 (3C-2V) eine Kabellänge von 
126m.
- Dann sind -3dB realistisch, denn insgesamt muss die Welle den Hin- und 
Rückweg durchlaufen.
Ich würde empfehlen, die Messung mit einem wesentlich kürzeren 
Kabelstück, das nicht aufgerollt sondern gerade sein sollte, zu 
wiederholen.

Außerdem muss ich aber die Frage stellen: Hast Du den VNA vor den 
Messungen kalibriert (open, short, load)?

von Felix U.nterwegs (Gast)


Angehängte Dateien:

Bewertung
0 lesenswert
nicht lesenswert
Guten Morgen,

Hp M. schrieb:
> Mechanisch wären das ca. 5,50 m bei einem Dielektrikum aus geschäumten
> PE oder 4,20m bei massivem PE.

Das kommt etwa hin

Hp M. schrieb:
> Theoretisch sollte die Amplitude der reflektierten Welle ja fast
> konstant sein, mit allmählichem Abfall zu hohen Frequenzen hin.

Ich hatte angenommen, dass die Welligkeit von einer 
konstruktiven/destruktiven Inteferrenz der vorlaufenden mit der 
rücklaufenden Welle kommt und dann eben immer bei halben oder viertel 
Wellenlängen auftritt.

Allerdings gibt es in dem oben von mir verlinkten Hilfe-Dokument mit der 
korrekten Messung (Bild angehängt) auch eine Welligkeit bis fast 10dB 
(der Maßstab bei mir war ja 1dB), also bin ich mir nicht sicher ob das 
wirklich eine gerade Linie sein müsste.

Hp M. schrieb:
> Ich ahne, dass du das Kabel mittels der in der Abschirmung vorhandenen
> schlecht leitenden metallisierten Kunststofffolie "geerdet" hast.(?)

Ich habe es auf verschiedene Varianten probiert, ein mal habe ich die 
Folie + Alulitze des Außenleiters verdrillt und verlötet und dann an ein 
SMA Breakout Board angeschlossen. Als zweites habe ich noch versucht, 
einfach ein Stück des Kabels abzuisolieren und direkt in einen SMA 
Adapter zu stecken, das Außenleitergeflecht über das Gewinde zu ziehen 
und mit einer Klemme zu fixieren. Ergab aber beides das gleiche 
Ergebnis.

Hp M. schrieb:
> Übrigens kannst du den Wellenwiderstand für höhere Frequenzen auch nur
> aus einer niederfrequenten Kapazitätsmessung oder den mechanischen
> Abmessungen ableiten

Ich möchte ungern auf solche Berechnungen zurückgreifen, da ja mein Ziel 
ist, eine Methode zu testen, mit der ich zB die Leitungswellenimpedanz 
eines Cu-Drahts um einen Ringkern messen kann. Das kann man dann ohne 
weiteres wohl nicht mehr berechnen.

DH1AKF K. schrieb:
> Ich würde empfehlen, die Messung mit einem wesentlich kürzeren
> Kabelstück, das nicht aufgerollt sondern gerade sein sollte, zu
> wiederholen.

Das Kabelstück ist etwa 3-5 Meter lang und lag "mehr oder weniger" 
abgewickelt im Raum. Natürlich hatte es ein paar Schleifen, aber 
geknickt oder aufgewickelt war es jedenfalls nicht.

DH1AKF K. schrieb:
> Außerdem muss ich aber die Frage stellen: Hast Du den VNA vor den
> Messungen kalibriert (open, short, load)?

Ja, das habe ich gemacht.

Gruß Felix

von Hp M. (nachtmix)


Bewertung
0 lesenswert
nicht lesenswert
Felix U.nterwegs schrieb:
> Ich hatte angenommen, dass die Welligkeit von einer
> konstruktiven/destruktiven Inteferrenz der vorlaufenden mit der
> rücklaufenden Welle kommt und dann eben immer bei halben oder viertel
> Wellenlängen auftritt.

So sieht das aus, wenn du die Spannung am Kabelanfang misst, und das ist 
dann ja tatsächlich eine Überlagerung der vorlaufenden und der 
rücklaufenden Welle.

S11 ist aber nicht die Summe, sondern das Amplituden verhältnis von 
rücklaufender zu vorlaufender (Spannungs) Welle, und ein VNA sollte in 
der Lage sein diese beiden Komponenten fein säuberlich zu trennen und 
separat zu messen.

Wenn man bei der niedrigen Frequenz und dem kurzen Kabel die 
Kabeldämpfung vernachlässigt, hat die reflektierte Welle fast die 
gleiche Intensität wie die vorlaufende, und dann ist der Betrag von S11 
nahezu 1 bzw. 0dB.

: Bearbeitet durch User
von Felix U. (ubfx)


Angehängte Dateien:

Bewertung
0 lesenswert
nicht lesenswert
Guten Morgen,

heute melde ich mich mit des Rätsels Lösung:

alle meine "75 Ohm" billig Koaxe haben tatsächlich zwischen 90 und 110 
Ohm. Ich habe jetzt zig verschiedene Kabelstücke durchgemessen mit dem 
folgenden Aufbau:

25cm gutes 50 Ohm SMA Coax -> ~ 10 cm "75 Ohm" billig Coax mit 
Antennenstecker -> verschiedene Coaxe

Auf den Screenshots sieht man deshalb immer zunächst ein kleines Stück 
50 Ohm (das gute SMA Coax) sowie ein kleiner Peak mit ~95 Ohm (das "75 
Ohm" billig Coax) und danach die Impedanz des gemessenen Kabelstücke.

Messung 1: etwa 3m "3C-2V" 75 Ohm billig TV-Coax + 137 Mhz Kreuzdipol am 
Ende

Messung 2: 2,5m billiges unbeschriftetes TV-Coax

Messung 3: 2,5m anderes billiges unbeschriftetes TV-Coax

Messung 4: billige DVB-T Antenne für RTL-SDR mit 1m Antennen Coax

In Anbetracht der Tatsache, dass ich für die DVB-T Antenne wirklich auf 
etwa 75 Ohm komme, denke ich, dass meine Messmethode korrekt ist aber 
die Kabel die ich habe einfach ziemlich schlecht sind.

Auffällig ist ja nicht nur, dass die Geraden bei falschen Werten liegen, 
sondern dass sie bei der relativ kurzen Kabellänge auch noch eine 
merkliche Steigung haben. Ich nehme mal an, die kommt von den relativ 
hohen Kabelverlusten.

Bei der Welligkeit in S11 gehe ich mal von parasitären Eigenschaften 
meines Adapter-Aufbaus sowie der Kabel aus. Dazu wären aber weitere 
Kommentare auch willkommen, immerhin zeigt die "korrekte" DVB-T 
Antennenmessung ja auch diese Welligkeit.

Ich werde später noch versuchen, ein Rechteck mit schnellen Risetimes zu 
erzeugen und dann diese Messungen nochmal final mit der 
Oszilloskop-Methode prüfen.

Viele Grüße

von EMU (Gast)


Bewertung
0 lesenswert
nicht lesenswert
Felix U. schrieb:
> Bei der Welligkeit in S11 gehe ich mal von parasitären Eigenschaften
> meines Adapter-Aufbaus sowie der Kabel aus. Dazu wären aber weitere
> Kommentare auch willkommen, immerhin zeigt die "korrekte" DVB-T
> Antennenmessung ja auch diese Welligkeit.

Nee, das hat nichts mit parasitär zu tun, Du misst ein offenes Stück 
Koax und dann erhält man genau so ein Muster. Nimm mal ein Stück 
Rigid-Koax (wenn Du hast) das sollte das beste Koax sein welches du hast 
und du wirst auch so einen S11 Verlauf sehen.
Dieser wellige Verlauf ist die Grundlage für die Fourier-Transformation 
aus der dann im Step-Mode der Z0-Verlauf ermittelt wird.
Wie man sieht ist Frequenzbereichsbetrachtung (S11) und 
Zeitbereichsbetrachtung (TDR) nicht sehr intuitiv "übersetzbar".

EMU

von Bernhard S. (gmb)


Bewertung
0 lesenswert
nicht lesenswert
Ich halte von dieser ganzen Zeitbereichsreflektometrie nicht viel - in 
Spezialfällen sinnvoll, wenn man wissen muss an welcher Stelle im Kabel 
der Defekt sitzt. Sonst aber gefährlich: Bei Systemen nahe 50 Ohm geht 
es noch, aber sobald eine größere Sprungstelle vorhanden ist, tut sich 
diese Methode schwer damit, für alles hinter der Sprungstelle 
vernünftige Werte zu liefern.

Das zu messende Kabel liegt aber dooferweise hinter der Sprungstelle...

Besser ist meiner Meinung nach, das Kabel mit z.B. 75 Ohm abzuschließen 
(SMD Widerstand direkt ran löten) und S11 im Smith Chart zu betrachten. 
Dort bekommt man einen Kreis, und aus den beiden Schnittpunkten mit der 
reellen Achse (die horizontale Achse die durch den Smith Chart geht) 
kann man dann die Kabelimpedanz errechnen.

Antwort schreiben

Die Angabe einer E-Mail-Adresse ist freiwillig. Wenn Sie automatisch per E-Mail über Antworten auf Ihren Beitrag informiert werden möchten, melden Sie sich bitte an.

Wichtige Regeln - erst lesen, dann posten!

  • Groß- und Kleinschreibung verwenden
  • Längeren Sourcecode nicht im Text einfügen, sondern als Dateianhang

Formatierung (mehr Informationen...)

  • [c]C-Code[/c]
  • [code]Code in anderen Sprachen, ASCII-Zeichnungen[/code]
  • [math]Formel in LaTeX-Syntax[/math]
  • [[Titel]] - Link zu Artikel
  • Verweis auf anderen Beitrag einfügen: Rechtsklick auf Beitragstitel,
    "Adresse kopieren", und in den Text einfügen




Bild automatisch verkleinern, falls nötig
Bitte das JPG-Format nur für Fotos und Scans verwenden!
Zeichnungen und Screenshots im PNG- oder
GIF-Format hochladen. Siehe Bildformate.
Hinweis: der ursprüngliche Beitrag ist mehr als 6 Monate alt.
Bitte hier nur auf die ursprüngliche Frage antworten,
für neue Fragen einen neuen Beitrag erstellen.

Mit dem Abschicken bestätigst du, die Nutzungsbedingungen anzuerkennen.