Forum: Digitale Signalverarbeitung / DSP Bildung und Nutzung von Sunderland Tabellen für Sinus


Announcement: there is an English version of this forum on EmbDev.net. Posts you create there will be displayed on Mikrocontroller.net and EmbDev.net.
von M. W. (elektrowagi78) Benutzerseite


Angehängte Dateien:

Bewertung
0 lesenswert
nicht lesenswert
Durch eine Recherche bei go...le stieß ich heute auf diese Art der 
Sinuserzeugung. Stichwort ist "Sunderland Zerlegung", offenbar 
publiziert um 1984 herum. Leider ergibt die Suche fast keine Ergebnisse 
außer immer wieder denselben Bezug zu der genannten Publikation und der 
Grafik oben.

Folgende Fragen:

1) Angeblich wird der Vektor (hier 12 Bit) in 3 Fragemente geteilt, 
welche der Vorschrift a<2(-1) , b<2(-4) und c<(-8) gehorchen. Das schon 
erkenne ich in der Grafik nicht wirklich wieder. So wie es scheint, 
werden die Vektoren einfach 4-Bit-weise geteilt. Dabei wären "A" die 
oberen 4, "B" die mittleren 4 und "C" die unteren 4. D'accord?

2) In den beiden Boxen finden sich dann zwei unterschiedliche 
Vorschriften zur Erzeugung der Werte. Dabeit ist mir widerum nicht klar, 
wie die Vektoren zugeführt werden müssen: Sind das nun beide Werte 
zwischen 0 und 15 parallel oder muss der jeweils obere 4 Bits nach oben 
geschiftet werden, sodass das Argument 8 Bit hat?

3) Was die Rechenvorschrift angeht: Komisch finde ich, dass der Sinus 
aus (a+b) gebildet wird, wo ich eigentlich Werte von 0 ... 1 erwartet 
hätte. Ich nehme an, man muss sie noch durch 16 teilen, um sie zu 
skalieren? Dann läuft (a+b) aber von 0 ... 2. Wobei die PI/2 dazu passen 
könnten. D'accord?
Oder sind es Werte von 0 ... 255 wegen 8 Bit CONCAT? und dann durch 256?

4) Was ist mit "nicht b" gemeint? Der Balken über dem b ist eine 
Inversion der Bits, was streng genommen dazu führt, dass man die gesamte 
Formel als boolsche Formel lesen müsste und das "+" als Oder lesen 
sollte. Ich nehme aber an, dass das b einfach auf ein (1-b) hinausläuft? 
Also 15-x oder sind es 16-x?

5) Wie ist der Ausgang zu interpretieren? Müssen die Sinuswerte noch auf 
9 und 4 Bit skaliert werden? Wie werden sie verrechnet? Im Text steht 
etwas von EXOR, aber das Symbol ist eher ein Connector. Werden nur die 
unteren 4 Bits verrechnet oder kommt die Tabelle von oben mit 9 Bits und 
hinten kommen 13 raus?

-------------------

Ich habe verschiedene Versionen probiert, komme aber zu keinem Sinus. 
Nicht annähernd. Irgendwie muss sich das aber lösen lassen denke ich. 
Hat jemand einen Tipp?

Die nächste Frage wäre dann:

6) Kann man die Vorschrift skalieren? Also z.B. doppelte Bits rein, 
doppelte Bits raus?

von Christoph db1uq K. (christoph_kessler)


Bewertung
1 lesenswert
nicht lesenswert
https://studfile.net/preview/429553/page:47/
da heisst es "Sunderland algorithm"

von M. W. (elektrowagi78) Benutzerseite


Bewertung
0 lesenswert
nicht lesenswert
Eine weitere Unklarheit: Im "FINE ROM" werden alle 3 Variablen benutzt, 
um den Tabellenwert zu definieren: "a", "nicht b" und "c". Daher braucht 
es dort 12 Bit = 4096 Einträge. D'accord?

Angesteuert wird die Tabelle aber nur mit A und B, also 256 
Möglichkeiten. Printed man die Tabelle, ist die aber nicht von b 
unabhängig.

Christoph db1uq K. schrieb:
> da heisst es "Sunderland algorithm"
Das bringt leider neue Konfusion, denn da kommen hinten nicht 9,4 Bits 
sondern 11, 4 heraus.

Ferner ist die sich ergebende letzlich als optimal hingestellte Struktur 
nach der dortigen Publikation wieder eine etwas andere.

von Wolfgang (Gast)


Bewertung
0 lesenswert
nicht lesenswert
M. W. schrieb:
> Hat jemand einen Tipp?

Guck dir einfach mal die Theorie an, die bei dem Algorithmus im 
Hintergrund steht:
https://de.wikipedia.org/wiki/Formelsammlung_Trigonometrie#Additionstheoreme

Der Sunderland Algorithmus stellt eine Verbesserung des Hutchison 
Algorithmus dar.

von M. W. (elektrowagi78) Benutzerseite


Angehängte Dateien:

Bewertung
0 lesenswert
nicht lesenswert
Wolfgang schrieb:
> Der Sunderland Algorithmus stellt eine Verbesserung des Hutchison
> Algorithmus dar.

Das habe ich auch schon gelesen. Die Theorie ist eigentlich auch klar. 
In einer anderen Seite findet sich diese Tabelle. Das sieht schon 
logischer aus, ist aber am Ende nichts anderes als ein Sinus über die 
höchsten 8 der 12 Bits. Es entsteht ein Viertelbogen mit jeweils 16 
identischen Werten, wegen der unteren 4 Bits.

Allerdings kriege ich die Vorschrift für das fine RAM nicht hin. So wie 
es dort steht, geht es nicht. Die Zwischenbögen interpolieren nicht 
sauber.

von M. W. (elektrowagi78) Benutzerseite


Angehängte Dateien:

Bewertung
0 lesenswert
nicht lesenswert
Hier ist die Summation beider Werte:

Es muss für die Werte im ROM 2, dem fine rom, ein Bogen herauskommen, 
der fast eine Gerade ist und weiter oben in der STeigung abflacht. Das 
Abflachen leistet der COS(c), der gegen PI gegen 0 geht. Das passt!

Die Gerade liefert der Sinus mit den unteren 4 Bits. Die Krümmung passt 
aber nicht. Ist zu stark gekrümmt. Aber nur bei diesem Ausschnitt X/16 * 
PI liefert er die richtige Amplitude.

Kann es sein, dass die weggelassenen Restterme / Bits die Ursache sind?

von Christoph db1uq K. (christoph_kessler)


Angehängte Dateien:

Bewertung
0 lesenswert
nicht lesenswert
Wenn ich das Ausgangssignal meines DDS hier vergrößert anschaue, hat der 
auch ähnliche Stufen. Die kochen alle nur mit Wasser.

von M. W. (elektrowagi78) Benutzerseite


Bewertung
0 lesenswert
nicht lesenswert
Ui, genau so sieht das aus! Da frage ich mich aber, was das dann soll. 
Ist das linear nicht besser?

von foobar (Gast)


Bewertung
0 lesenswert
nicht lesenswert
> Da frage ich mich aber, was das dann soll.

Hardware sparen und gleichzeitig schnell sein.

> Ist das linear nicht besser?

Mach mal in HW.  Und im Prinzip ist das Fine-ROM doch nichts anderes - 
16 unterschiedliche Interpolationssegmente, die oberen Bits wählen das 
Segment aus, die unteren die Punkte des Segments.

von M. W. (elektrowagi78) Benutzerseite


Bewertung
0 lesenswert
nicht lesenswert
foobar schrieb:
> Mach mal in HW.

Eine lineare Interpolation in HW ist trivial.

von foobar (Gast)


Bewertung
0 lesenswert
nicht lesenswert
> Eine lineare Interpolation in HW ist trivial.

Auch, wenn du direkt auf bestimmte Punkte innerhalb des 
Interpolationsintervalls zugreifen willst?  Also nicht inkrementell 
einen Punkt nach dem anderen?

von M. W. (elektrowagi78) Benutzerseite


Bewertung
0 lesenswert
nicht lesenswert
Warum nicht? Entweder, ich lese zwei Punkte aus der Tabelle und bilde 
die Steigung, oder ich lege sie gleich so ab. Beim Sinus hast du dann 
gleich den Cosinus. Der Rest ist Y = a * x + b.

von Christoph db1uq K. (christoph_kessler)


Bewertung
0 lesenswert
nicht lesenswert
Ob die Stufen so deutlich sichtbar sind, hängt vom Verhältnis 
Taktfrequenz zu Ausgangsfrequenz ab, hier war es gerade so, dass die 
still stehen. Normalerweise werden sie aber schnell wandern, dann sind 
sie am Oszilloskop nicht mehr zu erkennen. Spektral ist das ja eine 
ziemlich hohe Harmonische.

Außerdem habe ich ja einen kleinen Ausschnitt der Sinuskurve vergrößert. 
Und der AD9835 hat nur 14 Bit und ist relativ alt.

: Bearbeitet durch User
von M. W. (elektrowagi78) Benutzerseite


Bewertung
0 lesenswert
nicht lesenswert
Ich bezog mich auf die Bögen, die gerade im unteren Bereich auszumachen 
sind.

von Christoph db1uq K. (christoph_kessler)


Angehängte Dateien:

Bewertung
0 lesenswert
nicht lesenswert
ja die meine ich auch. Wenn ich die Frequenz verstelle, sind die Bögen 
nicht mehr zu sehen.
Einige DSP-Literatur vor allem ältere, kennt den Namen Sunderland. Hier 
in ISBN 9780070702561 wird von drei Tabellen gesprochen, im Gegensatz zu 
Hutchison, der nur zwei hat. books.google.com findet noch mehr zum 
Thema.

: Bearbeitet durch User
von Jürgen S. (engineer) Benutzerseite


Bewertung
0 lesenswert
nicht lesenswert
Markus W. schrieb:
> Entweder, ich lese zwei Punkte aus der Tabelle und bilde
> die Steigung,
Bei nicht näher definierten Verläufen ja, aber bei einem Sinus findet 
man den Cosinus auch 90° später in der Tabelle. Geht bei einem FPGA mit 
Lesen auf zwei Seiten im Block-RAM in voller Geschwindigkeit.

M. W. schrieb:
> Ist das linear nicht besser?
Es kommt nur auf die Relation an! Mit der Sunderland-Methode kriegt man 
pro ROM-Platz den besseren Sinus heraus. Er ist auch etwas besser, als 
das Zusatz-RAM wegzulassen und linear zu interpolieren. Die Bögen, die 
durch diese Interpolation (nicht) entstehen, entsprechen den Resten, die 
der Sinus produziert, wenn man eine Gerade abzieht. Ich hatte vor 
einiger Zeit hier eine Grafik gepostet, in der die Fehler der 
Interpolation bei einfachen Tabellen aufgezeigt wird:

Beitrag "Präzise Sinus-DDS mit kleiner Tabelle"

Diese kleinen Teilbögen im Bild links oben bekommt man mit Sunderland 
reduziert (wenn auch nicht weg). Und obwohl das etwas buckelig aussehen 
mag, ist es mitunter besser, weil die entstehenden Oberwellen geringer 
sind. Die Bögen sind runder.

Die Frage insgesamt aber ist aus meiner Sicht, ob man das überhaupt mit 
einer Tabelle machen muss, weil man (wie im Artikel angedeutet) mit 1GHz 
im ASIC Sinüsse generieren will, oder ob man das nicht auch komplett per 
Rechnung erledigen kann. Nach meinen bescheidenen Versuchen ist es 
meistens zweckmäßiger, das mit einer Ersatzrechnung zu tun, wenn man 
etwas Rechenzeit hat. Ich hatte hier einen Sinus gepostet, der mit einem 
8Bit-Rechner erzeugt werden kann. Der Fehler ist kleiner, als bei 
Sunderland gleicher Phasen- und Amplitudenauflösung! Man braucht also 
weniger Speicherfläche, sondern nur mehr Rechnerei, also etwas mehr 
Kombinatorik oder in einem AVR mehr Zeit.

https://www.mikrocontroller.net/articles/Datei:Opimierte_naeherung_sinusfunktion2_js.png

Wenn man es in einer Tabelle machen möchte, wofür es bei anderen 
Pulsformen mehr Berechtigung gibt, als beim Sinus, dann kann man eine 
Grobtabelle aus den Werten vorgeben und hinterlegen und eine Feintabelle 
mit Korrektur werten von der VHDL-Synthese berechnen lassen, indem man 
die Grobwerte von den Zielwerten abzieht und sie mit dem feiner 
aufgelösten Vektor ins Verhältnis setzt. Je nach Geschmack schiebt man 
das ins BRAM oder in eine WHEN -Tabelle, die die Synthese dann berechnet 
und ins LUTs abbildet.

Ich verfahre z.B. so bei einigen WAVE-TABLE-SYNTHESIS-Modulen, die eine 
Grundfrequenz haben: Diese wird in der Soll-Tabelle abgezogen und nur 
die Differenz gespeichert. Damit fallen 3-4 Bits der Amplitude weg, die 
weniger gespeichert werden müssen. Mit einem BLock-RAM, das nur 18 Bit 
breit ist, bekommt man so locker einen 20Bit genauen Wert. Hintendrein 
muss natürlich einmal addiert werden, aber Adder ist beim Mixer mit drin 
und die Wellenformen laufen eh alle parallel zu jederzeit mit, weil im 
FPGA alles zur gleichen Zeit existiert. Mit etwas Geschick bekommt man 
damit kostenlos eine gewaltige zusättzliche Zahl von 
Wellenform-Kombinationen, die praktisch kaum mehr Speicher oder 
Rechenaufwand machen.

Was reine Sinuserzeugung angeht, habe ich eine Version, die aus nur 9 
18-Bit-Multiplizieren besteht und einen Sinus auf > 16 Bit genau 
produziert. Hinzu kommt die Filterung und Interpolation.

von Jürgen S. (engineer) Benutzerseite


Bewertung
0 lesenswert
nicht lesenswert
Christoph db1uq K. schrieb:
> ja die meine ich auch. Wenn ich die Frequenz verstelle, sind die Bögen
> nicht mehr zu sehen.
Ist auch kaum anzunehmen, dass ein DDS-Chip die gleichen Fehler 
produziert. Das kommt eher von den Stufen bei geringen Frequenzen und 
dem Filter und seiner darauf nicht angepassten Grenzfrequenz. Das ergibt 
Kondensatorladekurven.


M. W. schrieb:
> Eine lineare Interpolation in HW ist trivial.
Auch eine quadratische Interpolation ist in HW nicht sonderlich 
aufwändig. Man braucht dann aber 2+1 Punkte.

Ich frage mich aber gerade etwas anders:

Wenn ich die beiden Bilder vergleiche, welche die Sunderland'schen 
Tabellenwerte beschreiben, dann ist oben einmal eine Geradengleichung 
(a+b) mit enthalten und unten nicht. Kann es sein, dass da etwas fehlt?

Die Gleichung oben sieht nämlich irgendwie so aus, wie ich es in der 
gelinkten Grafik gezeigt habe: Eine Gerade welche die Punkte linear 
verbindet und den entstehenden Rest als lauter Sinusbögen, die 
Sunderland versucht, mit dem Zusatz-ROM wegzunehmen.

Vielleicht muss diese Gerade in das Korrektur-ROM mit hinein?

Christoph db1uq K. schrieb:
> Hier in ISBN 9780070702561 wird von drei Tabellen gesprochen,
Was nur logisch wäre, weil es drei Phasenvektoren sind. Allerdings lässt 
man ja die mittleren Bits weg, wegen der Identität. Dem dürfte die 
dritte Tabelle zum Opfer gefallen sind.

Antwort schreiben

Die Angabe einer E-Mail-Adresse ist freiwillig. Wenn Sie automatisch per E-Mail über Antworten auf Ihren Beitrag informiert werden möchten, melden Sie sich bitte an.

Wichtige Regeln - erst lesen, dann posten!

  • Groß- und Kleinschreibung verwenden
  • Längeren Sourcecode nicht im Text einfügen, sondern als Dateianhang

Formatierung (mehr Informationen...)

  • [c]C-Code[/c]
  • [avrasm]AVR-Assembler-Code[/avrasm]
  • [code]Code in anderen Sprachen, ASCII-Zeichnungen[/code]
  • [math]Formel in LaTeX-Syntax[/math]
  • [[Titel]] - Link zu Artikel
  • Verweis auf anderen Beitrag einfügen: Rechtsklick auf Beitragstitel,
    "Adresse kopieren", und in den Text einfügen




Bild automatisch verkleinern, falls nötig
Bitte das JPG-Format nur für Fotos und Scans verwenden!
Zeichnungen und Screenshots im PNG- oder
GIF-Format hochladen. Siehe Bildformate.

Mit dem Abschicken bestätigst du, die Nutzungsbedingungen anzuerkennen.