www.mikrocontroller.net

Forum: PC Hard- und Software excel rechnet falschen sinus


Autor: paule (Gast)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
Wollte in excel eine Sinustabelle anlegen.

zB eingegeben.: =sin(90)   rauskommt 0,893996664
                =sin(180)           -0,801152636
                =sin(360)            0,958915723

Bin ich doof, oder was mache ich falsch?

mfg paule

: Verschoben durch Moderator
Autor: Karl Heinz (kbuchegg) (Moderator)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
In Programmiersprachen wird ein Winkel üblicherweise in Radianten 
angegeben und nicht in Grad


  sin( 90 * PI / 180 )

Autor: paule (Gast)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
Danke,
also doch doof,
mein Gott Schule ist lange her.

Autor: Andreas K. (derandi)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
Karl heinz Buchegger schrieb:
> In Programmiersprachen wird ein Winkel üblicherweise in Radianten
> angegeben und nicht in Grad

Warum eigentlich?
Mir erschließt sich da grade keine sinnvolle Begründung dafür...

Autor: Marcus Müller (marcus67)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
Das liegt daran, daß das die "natürliche" geometrische Repräsentation 
ist.

Wenn Winkel in trigonometrischen Formeln verwendet werden, nutzt man 
auch immer das Bogenmass.

Gruß, Marcus

Autor: brumbaer (Gast)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
Weil Computer zuerst für Aufgaben der Physik und angewandten Mathematik 
verwendet wurden.

In der Physik gibt es z.B. Kräfteberechnungen, die das Bogenmaß 
verwenden.

Außerdem vereinfacht das Bogenmaß das Differenzieren (gleichermaßen 
beliebt bei Mathematikern und Physikern) von Winkelfunktionen.

MfG
SH

Autor: Simon K. (simon) Benutzerseite
Datum:

Bewertung
0 lesenswert
nicht lesenswert
brumbaer schrieb:
> Außerdem vereinfacht das Bogenmaß das Differenzieren (gleichermaßen
> beliebt bei Mathematikern und Physikern) von Winkelfunktionen.

Das musste mir ma erklären.

Autor: A. R. (redegle)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
Rad hat den Vorteil, dass es als Einheit weggelassen werden kann.

u(t)=û*sin(w*t), diese Formel beschreibt eine Sinusspannung.
f=1Hz
w=omega --> "Normierung" damit der Sinus innerhalb einer Sekunde genau 
eine Periode zurücklegt.

w=2PIf

1Hz=1/s
w=2*PI*1/s
=2PI
=6,28/s

u(t)=û*sin(6,28/s*t)

Auf diese Art kann man elegant eine Sinusfunktion darstellen.

Wenn du nun mit dem Winkelmaß rechnen möchtest müsstest du ständig die 
Einheit mitschleppen.



Wobei jetzt fällt mir ein viel besseres Beispiel ein.

Wenn du den Teilumfang berechnen möchtest und im Bogenmaß arbeitest. 
Dann gilt

U=2*Pi*r
Das Verhältniss Winkel/Gesammtwinkel = Alpha/(2*PI)

U des Teilkreieses = r*phi
Denn die 2 Pi Kürzen sich weg.

Damit kann man sich auch sehr viel Arbeit ersparen.

Z.B. typische "Aufwärmaufgabe" einer Klausur.

Ein Objekt wird auf einer Kreisbahn mit r=1m mit 10rad/s^2 beschleunigt.
Welche Strecke legt es in 5s zurück.

phi=0.5at^2=125rad
Uteil=r*phi=125m
So spart man sich die gesammte Umrechnerei und ist nach 30Sekunden mit 
der Aufgabe fertig, wo andere 3Minuten lang rechnen.

Dann gibt es viele Formel wo das omega welches auf der Einheit Rad 
bassiert essentiell ist. Z.B. wenn du die Zentripetalkraft berechnen 
möchtest.
Diese währe a=w^2*r

Autor: Bernadette (Gast)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
Nur in der Geometrie verwendet man das Gradmaß.

Bei allen anderen Anwendungen verwendet man das Bogenmaß.

B.

Autor: Walter (Gast)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
Simon K. schrieb:
> brumbaer schrieb:
>> Außerdem vereinfacht das Bogenmaß das Differenzieren (gleichermaßen
>> beliebt bei Mathematikern und Physikern) von Winkelfunktionen.
>
> Das musste mir ma erklären.

Ableitung von sin(x) ist ja cos(x)

wenn man jetzt mit Grad arbeitet heißt das also
sin(grad/180*pi)
und was gibt das nach grad differenziert?
(das Ergebnis ist nicht cos(grad/180*pi))

Autor: Simon K. (simon) Benutzerseite
Datum:

Bewertung
0 lesenswert
nicht lesenswert
Ja, ist natürlich was dran. Hab da etwas voreilig geschrieben, denn, was 
ist denn wenn man jetzt einfach sagt, dass man den sich den Sinus mit 
Parameter als Gradmaß definiert? So wie, wenn man beim Taschenrechner 
auf DEG umschaltet.

Dann kann man ja wieder "ganz normal" differenzieren und trotzdem 
Gradzahlen einsetzen.

Irgendwo muss da noch ein Haken sein ;)

Autor: Walter (Gast)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
wenn du den Sinus so definierst kommt eben
als Ableitung von

sin(grad)

pi/180*cos(grad) raus

Autor: raketenfred (Gast)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
ist u(v)' nicht =v'*u(v) ?!-->pi/180*cos(pi/180*grad)

sowas meine ich zumindestens in mathe gelernt zu haben letztens...

Autor: Helmut S. (helmuts)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
(u(v))' = v'*u'(v)

Autor: Simon K. (simon) Benutzerseite
Datum:

Bewertung
0 lesenswert
nicht lesenswert
Das ist schon klar, Kettenregel eben.

Aber was wenn ich einfach sage (sin(x))' = cos(x), wobei x im Gradmaß 
angegeben wird? Kann man beim Taschenrechner ja einstellen.
Dann hat man eben keine "Amplitudenskalierung" vor dem cos-Term.

Autor: Helmut S. (helmuts)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
Deine Rechnung ist falsch.

Wenn x im Gradmaß ist, dann muss bei der Ableitung die Steigung pro Grad 
herauskommen wie bereits mehrfach vorgerechnet.
Steigung pro Grad ist natürlich völlig unpraktisch. Das braucht kein 
Mensch. Deshalb solltest du die dich mit dem Bogenmaß anfreunden.

Autor: Hameg Oszilloskop HM 207 (Gast)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
Pi/180 ist eine konstante, da is nix mit Kettenregel! Die kann man auch 
vor das Integral ziehen...

Autor: A. R. (redegle)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
Konstanten dürfen nur dann vor das integral gezogen werden, wenn sie als 
reine Multiplikation zu der Integrationsvariable stehen.

int(Pi/180*sin(x))dx --> PI/180 *int(sin(x)) dx
Wenn das Pi/180 aber im Sinus steht darf man das nicht.

int(sin(PI/180*x)) dx dort darf das Pi/180 nicht vor das Integral 
gezogen werden.

wenn man int(sin(PI/180*x)) dx rechnet bekommt man.
-(180 cos((pi x)/180))/pi+constant

Autor: Nils (Gast)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
Mein Gott, was diskutiert Ihr hier?
Mathematik ist keine basisdemokratische Veranstaltung.
Faktisch hat Karl heinz die Frage korrekt beantwortet.

Die zweite Frage, an der sich alles entzündete, war doch:
> Warum eigentlich?

Ja warum? Weil die elementaren Funktionen in Compiler- und 
Interpretersprachen über ihre Definition als Potenzreihe implementiert 
wurden. Beim Sinus:
sin(x) = x - x^3/3! +  x^5/5!  - ...
Dabei ist x im Bogenmaß definiert. Das ist schon alles - damit wird die 
Darstellung einfach und effizient.

Wenn ein Programmierer die Transformation 'Winkel -> Bogenmaß' unbedingt 
benötigt, führt er sie eben vorher durch. Das ist seine Freiheit.

Und noch eins:
Durch diese elementare Definition bleibt die elementare Sichtweise 
erhalten:
Obige Definition deckt sich mit:
- der Definition des sin als Funktionalgleichung
- der Definition des sin als DGL
- der Definition des sin als Integralgleichung
Die Äquivalenz dieser Darstellungen sichert die Definition, hier der 
Sinus-Funktion mit ihrem Definitions- und Wertebereich. Und diese 
Darstellungen sind zur Definition als Potenzreihe äquivalent. Und 
deshalb funtionieren unsere schönen bunten Darstellungen auf unseren 
tollen Rechnern.

Diese Äquivalenz ist mit x als Gradangabe leider schwierig, wie man 
leicht, z. B. an der Euler-Formel, erkennt.
Dass man Aufgrund von Homogenität und Additivität oftmals beliebig 
umskalieren kann, ändert wenig an dem Sinngehalt.

Gruß,
Nils

Autor: Yalu X. (yalu) (Moderator)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
Nils schrieb:
> Ja warum? Weil die elementaren Funktionen in Compiler- und
> Interpretersprachen über ihre Definition als Potenzreihe implementiert
> wurden. Beim Sinus:
> sin(x) = x - x^3/3! +  x^5/5!  - ...
> Dabei ist x im Bogenmaß definiert. Das ist schon alles - damit wird die
> Darstellung einfach und effizient.

Ich glaube nicht, dass in Programmiersprachen das Bogenmaß wegen der
Effizienz gewählt wurde. Da vor der Berechnung der Potenzreihe sowieso
das Argument modulo π/2 gerechnet werden muss, kann bei dieser Aktion
ohne Effizienzverlust auch gleich der Skalierungsfaktor mit eingebracht
werden. Deinen anderen Aussagen stimme ich aber voll zu.

Noch ein paar Gedanken zu den unterschiedlichen Winkeldarstellungen:

Winkel in der Geometrie und Geodäsie

Winkel werden wie dimensionsbehaftete physikalische Größen behandelt und
haben deswegen eine Einheit oder zumindest so etwas ähnliches (Grad oder
Gon). Das Argument der Sinus- und Cosinusfunktion ist immer ein Winkel,
deswegen auch die Bezeichnung Winkelfunktion. Ein Winkel wird niemals zu
einer dimensionslosen Zahl (bspw. dem Resultat einer Sinusfunktion)
addiert, so dass hier keinerlei Probleme entstehen. Die Skalierung der
Winkeldarstellung ist also frei wählbar.

Winkel außerhalb der Geometrie und Geodäsie

Winkel sind dimensionslos. Deswegen sind auch Ausdrücke wie sin(x)+x
erlaubt, was in der Geometrie nicht geht und auch keinen Sinn ergibt. Um
aber Winkel mit anderen dimensionslosen Größen mit eindeutigem Ergebnis
addieren zu können, ist eine eindeutige Definition Voraussetzung.

Irgendwann wurde entschieden, den Winkel als Verhältnis von Kreisbogen-
länge zu Kreisradius zu definieren, daher die Bezeichnung Bogenmaß.
Diese Definition

- ist einfach und natürlich,
- unabhängig von den Einheiten, in denen die beiden Längen gemessen
  werden, solange diese Einheiten gleich sind, und
- stellt eine Verbindung zur Geometrie dar, wo ja ebenfalls mit Längen
  gerechnet wird.

Die Einfachheit und Natürlichkeit dieser Definition im Vergleich zu den
eher willkürlich gewählten "Einheiten" Grad und Gon hat den angenehmen
Nebeneffekt, dass auch an anderer Stelle vieles einfacher wird:

- Beispiele aus der Analysis (Differenzieren, Integrieren, Potenzreihen,
  Differentialgleichungen usw.) wurden schon genannt

- In der Physik bekommt damit die Winkelgeschwindigkeit den gleichen
  Zahlenwert wie die Kreisfrequenz, was die Verrechnung von Drehbewegun-
  gen mit Schwingungen vereinfacht.

- In der Geometrie können durch umgekehrte Anwendung der Winkeldefini-
  tion ohne zusätzlichen Skalierungsfaktor Bogenlängen als Produkt von
  Winkel und Radius berechnet werden.

Der einzige Nachteil der Definition besteht darin, dass ausgezeichnete
Winkel wie der Vollwinkel oder der rechte Winkel nicht als ganze Zahlen-
werte darstellbar sind. 100 gon für einen rechten Winkel sieht einfach
besser aus als 1.570796…. So schwer wiegt dieser Nachteil aber auch
wieder nicht, da letzteres auch als π/2 geschrieben werden kann.

Zurück zu Excel:

Warum ausgerechnet das kaufmännisch orientierte Excel im Bogenmaß rech-
net, während fast alle als "wissenschaftlich" angepriesenen Taschenrech-
ner defaultmäßig das Gradmaß benutzen, erschließt sich mir nicht ganz.
Wahrscheinlich liegt es daran, dass Excel in einer gängigen Programmier-
sprache wie C entwickelt wurde und die Programmierer einfach zu faul
waren, die Winkel für das Userinterface in Grad umzurechnen :)

Autor: Simon K. (simon) Benutzerseite
Datum:

Bewertung
0 lesenswert
nicht lesenswert
@Yalu: Danke für deinen informativen Beitrag!

Autor: Helmut S. (helmuts)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
> während fast alle als "wissenschaftlich" angepriesenen
> Taschenrechner defaultmäßig das Gradmaß benutzen,
> erschließt sich mir nicht ganz.

Mir schon. Man ist doch froh, wenn die Kinder das mit den Grad packen.
Da kann man bei den meisten nicht auch noch mit Bogenmaß daherkommen. 
Das Rechnen im Bogenmaß setzt abstrakteres Denken voraus. Die ganze 
klassische Mathematik an Schulen ist auch viel zu Geometrielastig. Da 
braucht man sich dann nicht wundern, wenn die Taschenrechnerhersteller 
das Grad in der Standardeinstellung haben.

Autor: Yalu X. (yalu) (Moderator)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
@Helmut S.:

Was du schreibst, ist vollkommen richtig. Meine Verwunderung bezog sich
aber nicht auf die Taschenrechner, sondern auf Excel. Wenn schon Kinder
Schwierigkeiten mit dem Bogenmaß haben, wie sollen dann erst Betriebs-
wirte, Bankkaufleute u.ä. (also die typischen Excel-User) damit zurecht
kommen?

Wenn Taschenrechner defaultmäßig im Gradmaß rechnen, müsste dies Excel
doch erst recht tun. Stattdessen ist es im Gegensatz zum Taschenrechner
nicht einmal umschaltbar. Es gibt lediglich Konvertierungsfunktionen von
Radiant nach Grad und zurück.

Autor: adfix (Gast)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
>Betriebswirte, Bankkaufleute u.ä. (also die typischen Excel-User)

die benutzen aber keine Sinusfunktionen ....
sondern
= SUMME(x)
= GEWINN(x)
= MEINE_PROVISION(x)

Autor: Yalu X. (yalu) (Moderator)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
adfix schrieb:
>>Betriebswirte, Bankkaufleute u.ä. (also die typischen Excel-User)
>
> die benutzen aber keine Sinusfunktionen ....
> sondern
> = SUMME(x)
> = GEWINN(x)
> = MEINE_PROVISION(x)

Wohl vor allem die letzte :)

Antwort schreiben

Die Angabe einer E-Mail-Adresse ist freiwillig. Wenn Sie automatisch per E-Mail über Antworten auf Ihren Beitrag informiert werden möchten, melden Sie sich bitte an.

Wichtige Regeln - erst lesen, dann posten!

  • Groß- und Kleinschreibung verwenden
  • Längeren Sourcecode nicht im Text einfügen, sondern als Dateianhang

Formatierung (mehr Informationen...)

  • [c]C-Code[/c]
  • [avrasm]AVR-Assembler-Code[/avrasm]
  • [code]Code in anderen Sprachen, ASCII-Zeichnungen[/code]
  • [math]Formel in LaTeX-Syntax[/math]
  • [[Titel]] - Link zu Artikel
  • Verweis auf anderen Beitrag einfügen: Rechtsklick auf Beitragstitel,
    "Adresse kopieren", und in den Text einfügen




Bild automatisch verkleinern, falls nötig
Bitte das JPG-Format nur für Fotos und Scans verwenden!
Zeichnungen und Screenshots im PNG- oder
GIF-Format hochladen. Siehe Bildformate.
Hinweis: der ursprüngliche Beitrag ist mehr als 6 Monate alt.
Bitte hier nur auf die ursprüngliche Frage antworten,
für neue Fragen einen neuen Beitrag erstellen.

Mit dem Abschicken bestätigst du, die Nutzungsbedingungen anzuerkennen.