mikrocontroller.net

Forum: Analoge Elektronik und Schaltungstechnik Dreick zu Sinus Filtern


Autor: Huber M. (michael_h784)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
Hallo,
ich möchte zur Übung aus einer Dreiecksspannung eine Sinusspannung 
machen. Dazu hätte ich auch folgende aufgaben Stellung /Übung gefunden, 
aber wie sollte der Filter danach aussehen. Da kann ich mir nichts 
richtig darunter vorstellen (passiv oder aktiv).

¨ Übung:
Entwerfen Sie einen 440Hz Sinusozillator.
Anleitung: Entwerfen Sie zunächst einen 440Hz Oszillator für eine 
Dreiecksschwingung oder eine vergleichbare erste Näherung eines Sinus. 
Schalten Sie diesem Oszillator einen Filter nach, der Frequenzanteile 
über 440Hz aus dem Signal herausfiltert.


…. Entwerfen Sie zunächst einen 440Hz Oszillator für eine 
Dreiecksschwingung….
Das würde ich jetzt mit einem Schmitt-trigger cd4093 lösen. In dem ich 
ihn mit einem R und einem C richtig beschalte, aber welchen Filter? 
Einen passiven RC oder CR oder LC…. Würde mich um die einfachste Lösung 
freuen, um mir das erst mal richtig vorstellen zu können

Grüsse Huber

Autor: Christian S. (roehrenvorheizer)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
Hallo,

man kann aus einem symmetrischen Rechtecksignal ein Sinussignal erzeugen 
durch Tiefpaßfilterung. Ja besser die Filterung, desto besser der Sinus. 
Die Filterung soll nur die Grundwelle des Sinus, also 440 Hz durch 
lassen und sämtliche Oberwellen, also doppelte, drreifache, viefache... 
Frequenz möglichst stark unterdrücken.

Mit z.B einem Tiefpaß siebter Ordnung läßt sich schon ein sauberer Sinus 
generieren, der zudem eine stabile Amplitude hat.

Ebenso könnte man einen Bandpaß oder einen Resonanzkreis anregen. Ein 
mechanisches Beispiel dafür wäre ein Pendel oder ein Gong.

Siehe Don Lancaster, Filter Kochbuch

Mit freundlichem Gruß

Autor: THOR (Gast)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
Erster Aufgabenteil Dreieck mit 440Hz:
- Rechteckgenerator, zum Beispiel Relaxation Oscillator mit Op-Amp (im 
LM358 DB ist einer drin)
- Integrator

(Beides zusammen praktischerweise 2 OPVs, also 1 dual-IC)

Zweiter Aufgabenteil: Zum Sinus filtern.

Dazu meine Grundüberlegung: Es ist nicht gefordert, 0-440Hz durch den 
Filter zu lassen (denn dazu müsste der Filter bei 440Hz eine sehr hohe 
Ordnung haben). Es ist gefordert, NUR 440Hz durch den Filter zu lassen.
- Notchfilter mit OPV aufbauen


Es geht auch anders, das wäre aber mein Ansatz.

Autor: THOR (Gast)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
Nachtrag: Ein Notch-Filter ist eigentlich eine Bandsperre. Ich meinte 
mit Notch-Filter einen sehr schmalbandigen Bandpass.

Ist Peak-Filter das richtige Wort dafür?

Autor: THOR (Gast)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
www.ti.com/lit/an/snoa665c/snoa665c.pdf

Und es gibt natürlich Literatur dazu, Stichwort "triangle driven sine 
generator".

Autor: huber m (Gast)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
Christian S. schrieb:
> Mit z.B einem Tiefpaß siebter Ordnung läßt sich schon ein sauberer Sinus
> generieren, der zudem eine stabile Amplitude hat.

wäre hier zb. ein sallen-key Filter möglich ?

Christian S. schrieb:
> Ebenso könnte man einen Bandpaß oder einen Resonanzkreis anregen. Ein
> mechanisches Beispiel dafür wäre ein Pendel oder ein Gong.

also Phasenschieber oder Schwingkreis z bauen habe ich jetzt nicht vor. 
Mir gehts eher darum mit einem Filter etwas zu machen.

Autor: THOR (Gast)
Datum:

Bewertung
-2 lesenswert
nicht lesenswert
huber m schrieb:
> Christian S. schrieb:
>> Mit z.B einem Tiefpaß siebter Ordnung läßt sich schon ein sauberer Sinus
>> generieren, der zudem eine stabile Amplitude hat.
>
> wäre hier zb. ein sallen-key Filter möglich ?

Nein, nur 6. und 8. Ordnung, entspricht 3 und 4 OPV.

>
> Christian S. schrieb:
>> Ebenso könnte man einen Bandpaß oder einen Resonanzkreis anregen. Ein
>> mechanisches Beispiel dafür wäre ein Pendel oder ein Gong.
>
> also Phasenschieber oder Schwingkreis z bauen habe ich jetzt nicht vor.
> Mir gehts eher darum mit einem Filter etwas zu machen.

Du kannst auch sieben RC-Glieder hintereinander hängen.

Aber ein Reihenschwingkreis ist vermutlich etwas...kompakter.

Autor: huber m (Gast)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
THOR schrieb:
> Du kannst auch sieben RC-Glieder hintereinander hängen.

Ach, das geht doch.... diesen Ansatz will ich jetzt erstmal genau 
verfolgen...

THOR schrieb:
> Aber ein Reihenschwingkreis ist vermutlich etwas...kompakter.

das kann von mir aus erst mal 10 Meter lang sein :-)ich will erst ein 
mal das Grundprinzip verstehen. Bzw. etwas Sinus ähnliches am Oszi 
sehen.

Autor: THOR (Gast)
Datum:

Bewertung
2 lesenswert
nicht lesenswert
huber m schrieb:
> THOR schrieb:
>> Du kannst auch sieben RC-Glieder hintereinander hängen.
>
> Ach, das geht doch.... diesen Ansatz will ich jetzt erstmal genau
> verfolgen...

Bitte nicht.

> THOR schrieb:
>> Aber ein Reihenschwingkreis ist vermutlich etwas...kompakter.
>
> das kann von mir aus erst mal 10 Meter lang sein :-)ich will erst ein
> mal das Grundprinzip verstehen. Bzw. etwas Sinus ähnliches am Oszi
> sehen.

http://www.falstad.com/circuit/circuitjs.html?cct=...

Autor: huber m (Gast)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
THOR schrieb:
> http://www.falstad.com/circuit/circuitjs.html?cct=...

danke dafür das ist mal was, womit man was anfangen kann...

Autor: ArnoR (Gast)
Datum:

Bewertung
1 lesenswert
nicht lesenswert
THOR schrieb:
> huber m schrieb:
>> Christian S. schrieb:
>>> Mit z.B einem Tiefpaß siebter Ordnung läßt sich schon ein sauberer >>> Sinus 
generieren, der zudem eine stabile Amplitude hat.
>>
>> wäre hier zb. ein sallen-key Filter möglich ?
>
> Nein, nur 6. und 8. Ordnung, entspricht 3 und 4 OPV.

Natürlich lassen sich auch Sallen-Key-Filter ungeradzahliger (also auch 
7.)Ordnung bauen.

http://www.aktivfilter.de/sallen-key-tiefpass-3-ordnung.php

Christian S. schrieb:
> Mit z.B einem Tiefpaß siebter Ordnung läßt sich schon ein sauberer Sinus
> generieren

Man kommt bereits mit einem Filter 2. Ordung auf 1% Klirrfaktor.

Autor: ArnoR (Gast)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
Huber M. schrieb:
> ich möchte zur Übung aus einer Dreiecksspannung eine Sinusspannung
> machen.
> Würde mich um die einfachste Lösung freuen

Dann nimm halt diese Schaltung:

Beitrag "Re: Dimensionierung Sinusozillator"

und schließe das Filter nicht an den Ausgang des TLC555, sondern an den 
linken 22n an. Dort liegt eine nahezu dreieckförmige Spannung, die dann 
mit einem SK-Tiefpass 2. Ordnung gefiltert wird. Genauso gut kann man 
die Schaltung auch als Rechteckgenerator mit Filter 3. Ordnung 
auffassen.

Autor: THOR (Gast)
Datum:

Bewertung
-1 lesenswert
nicht lesenswert
ArnoR schrieb:

> http://www.aktivfilter.de/sallen-key-tiefpass-3-ordnung.php

Das ist ein RC-Glied mit nachgeschaltetem Sallen-Key, ergibt zusammen 
Filterordnung 3. Das ist kein Sallen-Key mit Filterordnung 3, denn ein 
Sallen-Key allein hat Ordnung 2 (erkennbar an den beiden 
Energiespeichern C1 und C2).

Autor: ArnoR (Gast)
Datum:
Angehängte Dateien:

Bewertung
2 lesenswert
nicht lesenswert
THOR schrieb:
> Das ist ein RC-Glied mit nachgeschaltetem Sallen-Key, ergibt zusammen
> Filterordnung 3.

Natürlich kann man das auch so auffassen, allerdings lässt sich dieses 
Filter wegen der Belastung des passiven TP durch den aktiven SK-TP nicht 
wie ein einfacher TP 1. Ordnung (entkoppelt) gefolgt von einem TP 
2.Ordnung berechnen.

Was ist eigentlich mit der angehängten Schaltung? Auch kein 
Sallen-Key-TP 4.Ordnung? ;-)

Autor: THOR (Gast)
Datum:

Bewertung
-1 lesenswert
nicht lesenswert
ArnoR schrieb:
> Was ist eigentlich mit der angehängten Schaltung? Auch kein
> Sallen-Key-TP 4.Ordnung? ;-)

Ja, da ist ja ne Rückführung drin.

Und nein, nur weil der SK auf das RC Glied rückkoppelt ist das noch kein 
Teil der SK Architektur.

Autor: Alexander S. (alesi)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
ArnoR schrieb:
> Dann nimm halt diese Schaltung:
>
> Beitrag "Re: Dimensionierung Sinusozillator"

Das sieht auf den ersten Blick mit bloßem Auge aber nicht wie
ein "reiner" Sinus aus. Die steigende und die fallende Flanke
sehen nicht wirklich symmetrisch aus.

Autor: ArnoR (Gast)
Datum:
Angehängte Dateien:

Bewertung
0 lesenswert
nicht lesenswert
Alexander S. schrieb:
> Das sieht auf den ersten Blick mit bloßem Auge aber nicht wie
> ein "reiner" Sinus aus.

Die verlinkte Schaltung war auch nicht auf minimale Verzerrungen, 
sondern auf maximalen Pegel bei geringstem Aufwand und erträglichem 
Klirrfaktor (~3%) ausgerichtet, das steht auch dort im Thread.

Im Anhang eine Schaltung mit gleichem Aufwand und nur 1% Klirr, 
allerdings mit weniger Pegel.

Autor: Alexander S. (alesi)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
Danke. Der Sinus sieht etwas besser aus.

Autor: Christian S. (roehrenvorheizer)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
Hallo,

welchen Tiefpaßfiltertypen Du verwendest, ist zunächst mal egal. Bei 
fester Frequenz spielt eine Welligkeit im Durchlaßbereich keine Rolle. 
Dich interessiert im Wesentlichen nur die Flankensteilheit. Tchebyscheff 
und elliptischer TP dürften am ehesten geeignet sein. Jedenfalls wird 
auch mit den anderen Typen ein Sinus am Ausgang erscheinen.

http://www.umnicom.de/Elektronik/Schaltungssammlun...

http://home.arcor.de/jonesnet/wiki/Filtertypen.pdf

http://www.krucker.ch/skripten-uebungen/EL1-2/EL-K...

mit freundlichem Gruß

: Bearbeitet durch User
Autor: Huber M. (michael_h784)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
Guten Morgen,

danke schon mal, das würde ich alles gern ausprobieren, aber für den 
ersten erfolgreichen Test, will ich mich mal mit dem Tchebyscheff-Filter 
beschäftigen.
Aber jetzt habe ich vorher noch ein anderes Problem. Ich habe mir jetzt 
mit einem Schmitt-trigger einen Multivibrtator mit 440kHz aufgebaut. 
Davon kann ich auch das dreieck-signal nehmen. Das wollte ich über einem 
Impendanzwandler ( aus LM258 )abgreifen. Und dann in den Tchebyscheff 
leiten. Allerdings kommt da am Impendanzwandler nur 1-2 khz raus. Ich 
dachte das müsste 1 zu 1 durchgehen, bei widerstandslosen negativer 
Rückkopplung. bzw. dachte ich das sei bis 1Mhz einganssignal kein 
problem ?


Ps.: der Impendazwandler wird mit einem dc-dc Wandler +-15V versorgt.

Autor: hk_book (Gast)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
Huber M. schrieb:
> Ich habe mir jetzt
> mit einem Schmitt-trigger einen Multivibrtator mit 440kHz aufgebaut.

War nicht die ganze Zeit von "440Hz" die Rede und jetzt sind es auf 
einmal kHz?

Autor: Christian S. (roehrenvorheizer)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
ganz oben waren das noch Hz und nicht kHz

Mit LM318 kann man das Filter auch noch mit 750 kHz Grenzfrequenz 
aufbauen.

Wahrscheinlich bringt der dcdc Wandler böse Störungen mit sich.

MfG

Autor: Huber M. (michael_h784)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
hk_book schrieb:
> War nicht die ganze Zeit von "440Hz" die Rede und jetzt sind es auf
> einmal kHz?

stimmt ich brauche ja 440Hz

Autor: Christian S. (roehrenvorheizer)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
Hallo,

also diesen Kammerton a, den man früher vom analogen Telefonanschluß her 
kannte. FREIZEICHEN.

http://www.deukerpiano.de/webservice/kammerton-a/

Mit freundlichem Gruß

Autor: Huber M. (michael_h784)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
Christian S. schrieb:
> also diesen Kammerton a, den man früher vom analogen Telefonanschluß her
> kannte. FREIZEICHEN.
>
> http://www.deukerpiano.de/webservice/kammerton-a/

Ah, ok das will später mal auf nen Lautsprecher testen, aber jetzt noch 
mal zu den Filter bzw zusammensetzung der Welle.

nehmen wir jetzt einmal das Dreiecksignal. Ist das so ? dass sich die 
signale aus unzähligen wellen (unterschiedlicher Frequenz) aneinander 
reihen, und zb. durch die RC Ladekurve das Signalbild bilden. Bzw. das 
signal aus lauter Oberwellen besteht.

mit dem Filter nehme ich jetzt, wie hier alle Frequenzen über 440Hz weg, 
weshalb sich der Spitz abrundet. Und einen Sinus bildet?

Autor: Henrik V. (henrik_v)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
Da die Aufgabe ja selbstgewählt ist:
Mein alter Wavetek Signalgenerator erzeugt auch ersteinmal eine 
Dreieckstpannung, dann jedoch wird diese über einen paar Dioden 
nichtlinear zu einem Sinus verzerrt. Bei einem Signalgenerator möchte 
man ja auch keine Festfrequenz.

Autor: Dergute W. (derguteweka)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
Moin,

Huber M. schrieb:
> Ist das so ?

Jepp. So isses. Bei einem symmetrischen Rechteck sind auch die Anteile 
der Oberwellen recht uebersichtlich gestrickt:

rechteck=sin(t)+(1/3)*sin(3*t)+(1/5)*sin(5*t)+(1/7)*sin(7*t)+...

Bei einem symmetrischen Dreieck siehts aehnlich aus:

dreieck=sin(t)-(1/3²)*sin(3*t)+(1/5²)*sin(5*t)-(1/7²)*sin(7*t)+...

So ein Dreieck, das aus exp-Funktionen zusammengesetzt ist, wird 
irgendwo zwischen Recheck und "schoenem" Dreieck liegen.

Entscheidend: Die Oberschwingungen sind bei Dreieck gleich viel 
schwaecher, weil 1/x² fuer groessere x schneller abnimmt als 1/x.

Also muss man "weniger" wegfiltern um aus einem Dreieck einen Sinus zu 
machen.

Gruss
WK

Autor: Christian S. (roehrenvorheizer)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
Hallo,

hier steht das ausführlich:

http://www.iem.thm.de/telekom-labor/zinke/fourier/...

hier z.B. anschaulich:
https://de.m.wikipedia.org/wiki/Rechteckschwingung

hier für Genießer anschaulich vorgeführt mit röhrenbehafteten 
Meßgeräten:
http://www.amplifier.cd/Fragen/Rechteck/Rechtecksp...

auch hier recht informativ:
http://www.elektronik-kompendium.de/public/schaere...


Die Filterung "macht Spitzen und Zacken weg". Übrig bleibt nur die 
Grundwelle und sie ist immer sinusförmig. Vorausgesetzt, das Filter 
arbeitet linear.

Mit freundlichem Gruß

: Bearbeitet durch User
Autor: W.S. (Gast)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
Huber M. schrieb:
> Da kann ich mir nichts
> richtig darunter vorstellen (passiv oder aktiv).

Hmm.. das ist schlecht. Ist das ne Übung, um Zeugs das du zuvor gelernt 
haben solltest, unter Beweis zu stellen?

Also, das Ganze geht auf zwei Arten:
1. die Art der sogenannten Funktionsgeneratoren: Da wird mit einem 
Spannungsteiler, der zum Teil aus einem Dioden-Netzwerk besteht, die 
dreieckige Signalform je nach Spannung gedämpft, so daß eine an den 
Sinus angenäherte Kurvenform entsteht. Geht ganz gut und ist per se 
frequenzunabhängig.

2. die Art der Frequenzfilter (ist wohl hier Kern der Aufgabenstellung): 
Da wird das Signal durch einen Tiefpaß geschickt, so daß alle 
Frequenzanteile außer der Grundschwingung möglichst gut weggedämpft 
werden. Ist logischermaßen frequenzabhängig. Wie gut das funktioniert, 
hängt erstens vom Aufwand ab, den man beim Filter treibt und zweitens, 
welche Filtercharakteristik (Bessel....Chebychev und Konsorten) man 
hinzukriegen versucht. Verständlichermaßen sind die Bauteile für ein 
passives Filter bei 440 Hz recht klobig, also versucht man häufig, die 
Sache mit RC-Filtern und OpV zu erledigen (Sallen-Key). Das geht dann 
mit dezenteren Bauteilen.

W.S.

Autor: Carlo (Gast)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
Bei Dreieck war glaube ich die 3. Oberwelle die erste dominante 
Harmonische, oder? Wie gut kriegt man die gegenüber der Grundwelle mit 
einem passiven Filter weg? 40dB sollten drin sein, oder?

Autor: THOR (Gast)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
Carlo schrieb:
> Bei Dreieck war glaube ich die 3. Oberwelle die erste dominante
> Harmonische, oder? Wie gut kriegt man die gegenüber der Grundwelle mit
> einem passiven Filter weg? 40dB sollten drin sein, oder?

http://www.math.uni-konstanz.de/fb_seiten/contrib/...

cos(3x)/3².

Ergibt bei 440Hz ne erste Oberschwingung von 1320Hz.

Jetzt kommt der Kompromiss zwischen Klirr und Amplitude:

- Wählt man fc=440Hz(oder sogar niedriger) ist die Amplitude kleiner als 
beim Eingangssignal(3dB weniger), aber die 1320Hz werden mit ca. 13dB 
bedämpft bei Filterordnung=1.
- Wählt man fc = 1300Hz werden die 440Hz Grundschwingung praktisch gar 
nicht mehr gedämpft, die erste Oberwelle aber dafür mit weniger als 3dB.

In der Praxis ist es wohl am einfachsten, die erste Methode zu wählen 
und dann danach noch ne Verstärkungsstufe zu schalten um auf die 
richtige Amplitude zu kommen.
Oder alternativ nen Sinusoszillator zu bauen wenn man nen Sinus braucht.

Autor: Jacko (Gast)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
Dreieck zu Sinus:

Ist doch die Lazy-Man-Variante:

A: Der Oberwellengehalt ist schon mal deutlich geringer,
   als bei Rechteck.

B: Passende Dreieckspannung, Vorwiderstand und zwei nach
   Gleichheit ausgewählte antiparallele Dioden gegen Masse...

Autor: Jürgen S. (engineer) Benutzerseite
Datum:
Angehängte Dateien:

Bewertung
0 lesenswert
nicht lesenswert
> In der Praxis ist es wohl am einfachsten, die erste Methode zu
> wählen und dann danach noch ne Verstärkungsstufe zu schalten um
> auf die richtige Amplitude zu kommen.
Mit aktiven analogen Filtern auf OP-Basis gelingt das schon recht gut, 
zudem kann man zur Versteilerung des Filters noch eine Präsenz vor der 
GF einsetzen. Es ist auch ziemlich unerheblich, ob man ein Rechteck 
nimmt, oder ein Dreieck.

> Der Oberwellengehalt ist schon mal deutlich geringer,
> als bei Rechteck
Nach einem fetten Filter, der das Dreieck rund macht, ist das gleich. 
Kann man schön mit Musiksynthesizern ausprobieren.

>Oder alternativ nen Sinusoszillator zu bauen wenn man nen Sinus braucht
Wenn man den Sinus wie hier selber erzeugen darf, dann geht das beliebig 
genau, weil man die Phase und Amplitude kennt und damit Gegensteuern 
kann. Diese Kompensationssynthese, wie Ich das nennen, bedeutet, man 
produziert mit derselben Schaltung , die die Basiswelle (Achtung, nicht 
"Grundwelle"!) macht, auch die Gegenwelle. Hier wäre es die dreifache 
Frequenz der Basiswelle. Damit rückt die erste zu unterdrückende 
Oberwelle um Oktaven nach oben. Wenn hier, wie beim Dreieck, die Wellen 
1,3,5,7 relevant sind, kommen dann 3*1, 3*3 und 3*5 ... hinzu.

Man bekommt also von den beiden Wellen a nud b das Spektum 1a, 3*0!, 5a, 
7a, 9(a-b), 11, 13, 15(a-b) ...  D.h. die 3. Oberwelle ist weg und die 
9. wird etwas abgeschwächt.

Macht man das mit Dreieckswelle C nochmal, bekommt man (im Kopf 
hingeschrieben, daher mit Vorbehalt) sowas wie: 1, 7, 9', 11, 13, 
15(a-b-c),17 ....  Dann kann man sehr leicht einen einfachen analogen 
Filter entwickeln, bei der die erste Problemwelle schon weit im Stopband 
legt.

"Basiswelle" heißt hier, dass hier keine Sinusgrundwelle benutzt wird. 
Das geht nämlich auch mit anderen Wellen. Mein erster 
Wellenformgenerator im C-64 und später meine DSP-Synthesizer arbeiteten 
mit Parabeln. Diese Parabeln enthalten Oberwellen, die sich wegheben, 
wenn man Mehrfache der Grundfrequenzen richtig miteinander verrechnet. 
Damit kann man sehr einfach digitale Sinüsse erzeugen, ohne eine 
Sinustabelle oder Iteration wie CORDIC zu bemühen. Dieser Denkansatz 
mündete in diesen Artikel

http://96khz.org/oldpages/sinesynthesisdds.htm

... sowie in diesen hier eingestellten: Digitale Sinusfunktion.

Wenn man das Verfahren auf die Analogtechnik rückprojiziert, dann läuft 
es auf ein passives Sperrfilter für die Oberwellen hinaus (die Frequenz 
ist ja bekannt!).


Eines noch, da hier wieder von 440Hz und Kammerton die Rede ist:

Besonders die Nichtmusiker neigen sehr gerne dazu, perfekte Sinuswellen 
erzeugen, wenn sie Töne produzieren wollen. Leider ist eine Sinuswelle 
zu ziemlich das Langweiligste, was man synthetisch bauen kann. Besser 
ist ein oberwellenreiches Spektrum, das dynamisch gefiltert wird.

Gerade das Dreieick ist da bestens geeignet: Lässt man den Filter beim 
Anschlag der Taste offen und dann erst langsam greifen, dann bauen sich 
die Oberwellen sehr schön ab und erzeugen einen Zupfeffekt, der real 
dadurch entsteht, dass die ebenfalls "dreiecksförmig" elongierte Saite 
beim Loslassen hohe Frequenzen erzeugt, die über die Saite rasen und 
rasch auslaufen - anders, als eine mit einen Klöppel angeschlagene 
Saite, die dumpfer anklingt.

Eine zwar nicht physikalisch richtige (da nicht atonal zum Grundklang 
verlaufend) aber sehr schöne Emulation eines solchen 
Oberwellenverhaltens ist eine ausklingende Parabel der exakt dreifachen 
Frequenz, wie in der Grafik oben rechts ausschnittsweise gezeigt.

Sowohl Basiswelle als auch Obertonwelle haben Harmonische und zwar 
solche, die sehr gut zusammen passen und sich je nach Amplitude 
hochinteressant verhalten:

Man beachte das sich bildende Plateau beim hier dargestellten 
Mischungsverhältnis 50:50! Wählt man davon den Auschnitt zwischen den 
Plateaurändern unten, dann gelangt man zu der von mir entwickelten 
S-Fensterfunktion, die bei der Synthese und Summation von Audiosignalen 
sogar das ansonsten sehr taugliche Blackman-Harris-Fenster toppt.

: Bearbeitet durch User
Autor: Jürgen S. (engineer) Benutzerseite
Datum:

Bewertung
0 lesenswert
nicht lesenswert
Um jetzt wieder zum rein Analogen zu kommen und noch auf die Idee mit 
den Dioden einzugehen: An der oben geposteten Grafik rechts kann man 
sehr schon sehen, warum durch das Clippen mit Dioden in der 
Frequenzbetrachtung plötzlich eine dritte Oberwelle "entsteht". Die 
Dioden liefern aber nicht den Anstieg des Dreiecks während der 
steigenden Phase des Dreiecks, der benötigt wird, um es bauchiger zu 
machen.

In der Grafik oben rechts ist die dritte OW addiert, um das Signal 
spitzer zu machen. Es ist einsichtig, dass sie für die Bildung des Sinus 
abgezogen werden muss, was das Minus in der Fourierreihe erklärt.

Autor: Possetitjel (Gast)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
Dergute W. schrieb:

> Entscheidend: Die Oberschwingungen sind bei Dreieck
> gleich viel schwaecher, weil 1/x² fuer groessere x
> schneller abnimmt als 1/x.

Stimmt genau.

Noch ein weiterer - selten angewendeter - Trick ist der:
Man schneidet die Spitzen der Dreieckschwingung ab und
erhaelt eine Trapezschwingung. Bei einer genau bestimmten
"Abschneide-Hoehe" verschwindet die dritte Harmonische;
da ohnehin nur ungeradzahlige Harmonische enthalten sind,
ist dann die niedrigste die 5. Harmonische.
Das entspannt die Auslegung des Filters.

Autor: Jürgen S. (engineer) Benutzerseite
Datum:

Bewertung
0 lesenswert
nicht lesenswert
Possetitjel schrieb:
> Noch ein weiterer - selten angewendeter - Trick ist der:

Grins: Dieser "geniale Trick" ist zwei Posts weiter oben beschrieben :-)

Er ist auch nicht unbedingt selten, weil er in nahezu jeder digitalen 
Sinusschaltung drin steckt, die ich je gemacht oder jemandem verkauft 
habe.

Er ist halt nur in dem Fall nutzbar, wenn man die Amplitude kennt! Ich 
hatte mal die Aufgabe, genau so ein Dreieck, das aus einem Sensor als 
Störsignal kommt, zu kompensieren. Der Versuch, die Amplitude zu 
"messen" und passend zu clippen, war dem damaligen Entwicklungsleiter 
aber nicht geheuer und hätte zudem noch OPVs benötigt. Also blieb das 
Geklirre in der Schaltung drin.

Autor: Possetitjel (Gast)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
Jürgen S. schrieb:

> Mein erster Wellenformgenerator im C-64 und später
> meine DSP-Synthesizer arbeiteten mit Parabeln.

Hübsch.

> Diese Parabeln enthalten Oberwellen, die sich
> wegheben, wenn man Mehrfache der Grundfrequenzen
> richtig miteinander verrechnet.

Ergänzend zu diesem Gedanken und der Bemerkung vom
guten W.K.: Beim Rechteck, das man sich als Abfolge
von konstanten Funktionen vorstellen kann, gehen die
Harmonischen mit 1/n. Beim Dreieck, das aus linearen
Funktionen zusammengebaut ist, gehen die harmonischen
mit 1/n². Wenn man quadratische Parabeln passend
zusammenklebt, gehen die Harmonischen mit 1/n³.

Der Trick, die dritte Harmonische zum Verschwinden zu
bringen, klappt auch bei den Parabeln. Wenn man das Trapez
integriert, kommt man auf eine Funktion, die in der Naehe
der Nulldurchgänge aus linearen Stücken besteht, auf die
passende "Parabelkappen" aufgesetzt sind.

Autor: Jobst M. (jobstens-de)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
Oooooder man schaut ins Datenblatt des ICL8038 ;-)
(Seite 4 im verlinkten DB, rechter Teil der Schaltung ...)


Gruß

Jobst

Autor: Carlo (Gast)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
ArnoR schrieb:
> Man kommt bereits mit einem Filter 2. Ordung auf 1% Klirrfaktor.

Was aber auch noch nicht so richtig dolle ist. Wozu soll man überhaupt 
die 440 HZ erst als Dreieck bilden und dann zurechtschneiden? Warum 
nicht gleich einen Sinusgenerator direkt? Das Dreieck muss doch auch 
erst aus einer Schaltung erzeugt werden oder mit einem 
Controller+Wandler ausgegeben werden, da kann man doch gleich nen Sinus 
ausgeben. Der ist dann nur treppig und bedarf der Filterung.


>Dre(i)ck zu Sinus Filtern

Die ganze Geschichte hier ist doch wieder mal total akademisch und ohne 
Praxisbezug. So lernen die Studenten nur das Falsche. Statt einem 
einfachen Sinusschwinger aus 5 Bauteilen wird das Zehnfache gebaut, das 
schlecht und dann mit aktiven Filtern 15ter Ordnung versucht, das 
Falsche wegzumachen.

Ein schuppeliger Sinusschwinger mit einem rückgekoppelten OP bringt es 
locker auf 0,01% Klirrfaktor.

Autor: Jürgen S. (engineer) Benutzerseite
Datum:

Bewertung
0 lesenswert
nicht lesenswert
Possetitjel schrieb:
>> Mein erster Wellenformgenerator im C-64 und später
>> meine DSP-Synthesizer arbeiteten mit Parabeln.
> Hübsch.
Leider das Einzige, was man an "Signalverarbeitung" bei der Kiste machen 
konnte:-) Und die Systemfrequenz von 2MHz reichte selbst bei 
ASM-Programmen zu nicht mehr, als Basstönen mit zufälligen Oberwellen. 
Bei dem SID wiederum ergab sich das Problem, dass die Dreiecke der 
Tongeneratoren nicht phasenrichtig lagen und somit die Auslöschung nicht 
beliebig exakt gelang.

> Wenn man quadratische Parabeln passend
> zusammenklebt, gehen die Harmonischen mit 1/n³.
Genau das war das Ziel.

> Der Trick, die dritte Harmonische zum Verschwinden zu
> bringen, klappt auch bei den Parabeln.
Ja klar, deshalb hatte ich die ja auch in meinen Beitrag oben 
reingefummelt. Aber wie Ich schon sagte: Für die Musikerzeugung wird die 
Harmonische nicht angezogen und das Signal rund gemacht, sondern es wird 
verstärkt.

Ich werde wohl zu Weihnachten mal ein kleines Release meines Synthies 
machen (monophon) wo man das einsellen kann. Vielleicht kann man es ja 
in ein Projekt wie das des Signalgenerators einfliessen lassen:

Beitrag "FPGA Lab: modulierbarer Signalgenerator, Universalzähler,."

Autor: Possetitjel (Gast)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
Carlo schrieb:

> ArnoR schrieb:
>> Man kommt bereits mit einem Filter 2. Ordung auf 1% Klirrfaktor.
>
> Was aber auch noch nicht so richtig dolle ist.

???

Zitat TO: "...

  Huber M. schrieb:
  > ich möchte zur Übung aus einer Dreiecksspannung eine
  > Sinusspannung machen.


> Wozu soll man überhaupt die 440 HZ erst als Dreieck bilden
> und dann zurechtschneiden? Warum nicht gleich einen
> Sinusgenerator direkt?

Jetzt mal unabhaengig von der Frage des TO: Auf meinem
Basteltisch liegt ein klassischer Dreieck-Rechteck-
Funktionsgenerator, der sich mit einer Steuerspannung im
Bereich 1:1000 durchstimme laesst (10Hz bis 10kHz in einem
Bereich).

Du kannst mir ganz sicher ein einfaches Schaltungsprinzip
fuer einen Sinusgenerator nennen, das dasselbe leistet, nicht
wahr?
(Hinweis: "Differenzmischung" zaehlt bei mir nicht als einfaches
Schaltungsprinzip.)

> Die ganze Geschichte hier ist doch wieder mal total akademisch
> und ohne Praxisbezug. So lernen die Studenten nur das Falsche.

Netter Versuch. :)

> Ein schuppeliger Sinusschwinger mit einem rückgekoppelten OP
> bringt es locker auf 0,01% Klirrfaktor.

Machen und zeigen.
Nein -- eine Spice-Simulation gilt nicht als "gemacht und gezeigt"!

Und der Fairness halber solltest Du beim Demonstrieren Deiner
Wunderschaltung noch auf folgende Punkte eingehen:
Wie gut ist die Amplitudenstabilitaet des Signals?
Benoetigt die Schaltung exotische bzw. handselektierte Bauteile?
Hat die Schaltung sonstige störende Eigenschaften (zum Beispiel
eine Amplitudenregelung, die gerne mal schaukelt)?

Viel Spasz und viel Erfolg! :)

Autor: Lurchi (Gast)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
Der Weg von Dreieck zum Sinus ist nicht so abwegig. Hat man lange Zeit 
bei Funktionsgeneratoren so gemacht, selbst wenn man das Dreieck ggf. 
gar nicht braucht und ausgibt. Eine Schwierigkeit mit den nichtlinearen 
Schaltungen ist, dass die leicht temperaturabhängig werden. Es ist aber 
schon eine gar nicht so schlechte Näherung.

Für den Filter gibt Dreieck statt Rechteck halt eine Filterordnung mehr. 
Ein Filter 1. Ordnung (als Integrator) macht gerade das Dreieck aus 
einem Rechteck.

Autor: Axel S. (a-za-z0-9)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
Lurchi schrieb:
> Der Weg von Dreieck zum Sinus ist nicht so abwegig. Hat man lange Zeit
> bei Funktionsgeneratoren so gemacht, selbst wenn man das Dreieck ggf.
> gar nicht braucht und ausgibt.

Ganz recht. Nur verwendet der Dreieck -> Sinus Umformer in diesen 
Schaltungen eben gerade keinen Filter, sondern wirkt direkt auf die 
Amplitude des Signals. Dadurch ist er frequenzunabhängig.

Ein weiterer Pluspunkt dieses Schaltungsprinzips ist, daß die Frequenz 
eines Dreieck/Rechteck-Generators relativ einfach spannungs- bzw. 
stromgesteuert werden kann. In Verbindung mit dem Sinusformer kriegt man 
so einen preiswerten Wobbelgenerator.

Der TE hat all das offensichtlich nicht verstanden. Sonst würde er nicht 
versuchen, die Oberwellen mit einem frequenzselektiven Filter aus dem 
Dreieck zu entfernen.

Autor: Possetitjel (Gast)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
Axel S. schrieb:

> Sonst würde er nicht versuchen, die Oberwellen mit
> einem frequenzselektiven Filter aus dem Dreieck zu
> entfernen.

Meine Güte.

Es gibt mehr als einen Anwendungsfall, und es gibt auch
mehr als ein Funktionsprinzip.

Wenn man einen Sinus braucht, ist der klassische Weg der,
einen Sinus zu erzeugen. Du dürftest aber selbst wissen,
dass das deutlich weniger trivial ist, als es klingt.

Also könnte ein nichtklassischer Weg so aussehen:

1) Man erzeugt eine Dreieckschwingung. (555 plus OPV.)
   --> Harmonische fallen mit 1/n² ab.

2) Man kappt die Spitzen der Dreiecke. (weiterer OPV)
   --> die 3. Harmonische fällt ganz aus.

3) Die entstandene Trapezschwingung wird tiefpassgefiltert.
3.1) Die niedrigste Harmonische, nämlich die 5., ist mit
     -28dB enthalten.
3.2) Aufgrund des großen Abstandes zur Grundwelle gibt jede
     Filterordnung geschätzt (mindestens) 10dB Dämpfung.
3.3) Ein Filter 5. Ordnung gibt also 50dB Dämpfung; Aufwand
     sind 2 OPV.
3.4) Restamplitude der 5. Harmonischen: ca. -80dBc

Gesamtaufwand: 555 plus TL084 plus Hühnerfutter
Ergebnis: Amplituden- und frequenzstabiler Sinus mit k<0.01%
Besonderheiten: rein analoge RC-Schaltung, abgleichfrei,
keine Spezialbauteile, kein µC.

Autor: Axel S. (a-za-z0-9)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
Possetitjel schrieb:
> Axel S. schrieb:
>
>> Sonst würde er nicht versuchen, die Oberwellen mit
>> einem frequenzselektiven Filter aus dem Dreieck zu
>> entfernen.
>
> Meine Güte.
>
> Es gibt mehr als einen Anwendungsfall, und es gibt auch
> mehr als ein Funktionsprinzip.

Na klar. Aber wenn jemand aus Unkenntnis (oder welchem anderen Grund 
auch immer) ein unnötig aufwendiges Prinzip verwendet, dann wird man ihm 
das ja wohl auch sagen dürfen.

Autor: Lurchi (Gast)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
So schlecht ist das Prinzip mit Dreieck und filter nicht, wenn man einen 
Sinus mit stabiler Amplitude braucht und kein super hohen Anforderungen 
an die Reinheit hat. Die Varianten mit nichtlinearer Funktion sind 
relativ temperaturabhängig. Schon mit einem Filter 3. ter Ordnung (geht 
mit 1 OP) kann man das Signal als Sinus betrachten - besser wird es mit 
der nichtlineare Signalformung eher auch nicht.

Autor: Jürgen S. (engineer) Benutzerseite
Datum:

Bewertung
0 lesenswert
nicht lesenswert
Lurchi schrieb:
> - besser wird es mit
> der nichtlineare Signalformung eher auch nicht.
Die Dioden bilden aber im Zeitbereich weichere Übergänge mit weniger 
Ecken, die bei ganz bestimmten Filtern Vorteile haben. Ich beziehe mich 
da wieder auf Musik, weil hier ja 440Hz behandelt werden.

Lurchi schrieb:
> Der Weg von Dreieck zum Sinus ist nicht so abwegig. Hat man lange Zeit
> bei Funktionsgeneratoren so gemacht, selbst wenn man das Dreieck ggf.
> gar nicht braucht und ausgibt.

Genau. Analog mit einem Integrator und digital mit einem Zähler. Wobei:

Possetitjel schrieb:
> 1) Man erzeugt eine Dreieckschwingung. (555 plus OPV.)
Die ist aber auch nicht so hundertprozentig stabil, weil das aus dem 
Rechteck hochintegrierte Dreieck immer die Tendenz hat, wegzulaufen, 
weil es nie hinzubekommen ist, ein 50:50 zu schaffen. Alles was dies 
indirekt dann doch bewerkstelligt, sorgt DC-off offset und damit 
AC-Verhalten.

Ergänzend zum ersten Satz sind es aber genau diese "Analog-Effekte", die 
z.B: bei Klangsynthese zu Leben führen. Solche Filter werden da z.B. mit 
gestimmten Filterbänken erzeugt, die dann wieder wie oben beschrieben 
"Gegenregeln".

"Regeln" nenne ich es deshalb, weil dort eine Amplitudenregelung das 
eingehende Signal aus dem Signalgenerator analysiert und das 
verdreifachte Signal FAST amplituden- und FAST phasenrichtig addiert / 
abzieht. Das Wort FAST ist hier das Entscheidende. Im Einschwingfall und 
bei Amplituden- und Frequenzänderung stimmt das erst mal nicht. Da 
steckt dann genau die Anschlagsdynamik drin, welche die Analogfreunde 
bei den kalten exakten Synthies immer vermissen.

: Bearbeitet durch User
Autor: Jürgen S. (engineer) Benutzerseite
Datum:
Angehängte Dateien:

Bewertung
0 lesenswert
nicht lesenswert
Hier ist nochmal ein Ausdruck aus meinem Synthesis-Sheet mit den 
ungeraden Oberwellen, mit einigen Spezialfällen, die nur vom 
Mischungsverhältnis von Basisparabel und gfs negierten 3F-Parabel 
abhängen.

Antwort schreiben

Die Angabe einer E-Mail-Adresse ist freiwillig. Wenn Sie automatisch per E-Mail über Antworten auf Ihren Beitrag informiert werden möchten, melden Sie sich bitte an.

Wichtige Regeln - erst lesen, dann posten!

  • Groß- und Kleinschreibung verwenden
  • Längeren Sourcecode nicht im Text einfügen, sondern als Dateianhang

Formatierung (mehr Informationen...)

  • [c]C-Code[/c]
  • [avrasm]AVR-Assembler-Code[/avrasm]
  • [code]Code in anderen Sprachen, ASCII-Zeichnungen[/code]
  • [math]Formel in LaTeX-Syntax[/math]
  • [[Titel]] - Link zu Artikel
  • Verweis auf anderen Beitrag einfügen: Rechtsklick auf Beitragstitel,
    "Adresse kopieren", und in den Text einfügen




Bild automatisch verkleinern, falls nötig
Bitte das JPG-Format nur für Fotos und Scans verwenden!
Zeichnungen und Screenshots im PNG- oder
GIF-Format hochladen. Siehe Bildformate.
Hinweis: der ursprüngliche Beitrag ist mehr als 6 Monate alt.
Bitte hier nur auf die ursprüngliche Frage antworten,
für neue Fragen einen neuen Beitrag erstellen.

Mit dem Abschicken bestätigst du, die Nutzungsbedingungen anzuerkennen.